找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Numbers; An Introduction for J?rg Kortemeyer Book 2021 Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2021 Number Ran

[復制鏈接]
查看: 8400|回復: 35
樓主
發(fā)表于 2025-3-21 16:08:51 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Complex Numbers
副標題An Introduction for
編輯J?rg Kortemeyer
視頻videohttp://file.papertrans.cn/232/231516/231516.mp4
概述Compact presentation of a central topic
叢書名稱essentials
圖書封面Titlebook: Complex Numbers; An Introduction for  J?rg Kortemeyer Book 2021 Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2021 Number Ran
描述.Complex numbers are a typical topic of basic mathematics courses. This .essential .provides a detailed introduction and presentation of essential aspects of dealing with complex numbers, on the one hand related to commonly occurring tasks and on the other hand embedded in basic mathematical content.?.This?.Springer essential.?is a translation of the original German?1.st.?edition?.essentials.?.Komplexe Zahlen .by?J?rg Kortemeyer, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2020. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors..
出版日期Book 2021
關鍵詞Number Range Expansion; Cartesian Representation; Euler Representation; Polar Display; Real Part; Imagina
版次1
doihttps://doi.org/10.1007/978-3-658-34929-5
isbn_ebook978-3-658-34929-5Series ISSN 2197-6708 Series E-ISSN 2197-6716
issn_series 2197-6708
copyrightSpringer Fachmedien Wiesbaden GmbH, part of Springer Nature 2021
The information of publication is updating

書目名稱Complex Numbers影響因子(影響力)




書目名稱Complex Numbers影響因子(影響力)學科排名




書目名稱Complex Numbers網(wǎng)絡公開度




書目名稱Complex Numbers網(wǎng)絡公開度學科排名




書目名稱Complex Numbers被引頻次




書目名稱Complex Numbers被引頻次學科排名




書目名稱Complex Numbers年度引用




書目名稱Complex Numbers年度引用學科排名




書目名稱Complex Numbers讀者反饋




書目名稱Complex Numbers讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:54:30 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:41:34 | 只看該作者
Etruskische und r?mische Kultur in Italienrs in counting, i.e. ., where it quickly becomes apparent that one can already leave this set when subtracting two natural numbers. For example, the solution of . is not a natural number, although 3 and 5 are natural numbers. Hence, the integers . are introduced which now also contain the number 0 a
地板
發(fā)表于 2025-3-22 08:22:39 | 只看該作者
Romanischer Bereich, Frankreichhe previous chapter, complex numbers are an extension of real numbers. In this chapter, you will see that a complex number is an ordered pair of real numbers. This chapter introduces the first representation of complex numbers, which is especially good for addition and subtraction. As explained in t
5#
發(fā)表于 2025-3-22 08:57:30 | 只看該作者
https://doi.org/10.1007/978-3-322-86256-3lar form and the Euler form. Both have advantages over the Cartesian form with respect to multiplication, division and exponentiation. Especially the Euler form is very common in engineering and natural sciences. This chapter introduces—after a short repetition of pre-course contents on trigonometry
6#
發(fā)表于 2025-3-22 14:11:02 | 只看該作者
Complex Numbers978-3-658-34929-5Series ISSN 2197-6708 Series E-ISSN 2197-6716
7#
發(fā)表于 2025-3-22 18:33:15 | 只看該作者
8#
發(fā)表于 2025-3-22 22:18:57 | 只看該作者
J?rg KortemeyerCompact presentation of a central topic
9#
發(fā)表于 2025-3-23 02:16:50 | 只看該作者
essentialshttp://image.papertrans.cn/c/image/231516.jpg
10#
發(fā)表于 2025-3-23 07:08:36 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 12:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
仁怀市| 兴海县| 宜兰市| 博客| 凤山县| 平湖市| 泰来县| 云阳县| 宜丰县| 化隆| 怀宁县| 高阳县| 綦江县| 沛县| 昭觉县| 昔阳县| 邹城市| 昌吉市| 闸北区| 巨野县| 临泽县| 博客| 佛教| 贺兰县| 曲周县| 浑源县| 乌拉特前旗| 封丘县| 石景山区| 温州市| 同德县| 化德县| 固镇县| 汝州市| 通辽市| 满城县| 宽城| 仲巴县| 观塘区| 康定县| 沙雅县|