找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics; Vincent Guedj Book 2012 Springer-Verlag Berlin Heidelberg 201

[復(fù)制鏈接]
查看: 48003|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:34:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics
編輯Vincent Guedj
視頻videohttp://file.papertrans.cn/232/231473/231473.mp4
概述The first self contained presentation of Krylov‘s stochastic analysis for the complex Monge-Ampere equation.A comprehensive presentation of Yau‘s proof of the Calabi conjecture.A great part of the mat
叢書(shū)名稱Lecture Notes in Mathematics
圖書(shū)封面Titlebook: Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics;  Vincent Guedj Book 2012 Springer-Verlag Berlin Heidelberg 201
描述.The purpose of these lecture notes is to provide an introduction to the theory of complex Monge–Ampère operators (definition, regularity issues, geometric properties of solutions, approximation) on compact K?hler manifolds (with or without boundary)..These operators are of central use in several fundamental problems of complex differential geometry (K?hler–Einstein equation, uniqueness of constant scalar curvature metrics), complex analysis and dynamics. The topics covered include, the Dirichlet problem (after Bedford–Taylor), Monge–Ampère foliations and laminated currents, polynomial hulls and Perron envelopes with no analytic structure, a self-contained presentation of Krylov regularity results, a modernized proof of the Calabi–Yau theorem (after Yau and Kolodziej), an introduction to infinite dimensional riemannian geometry, geometric structures on spaces of K?hler metrics (after Mabuchi, Semmes and Donaldson), generalizations of the regularity theory of Caffarelli–Kohn–Nirenberg–Spruck (after Guan, Chen and Blocki) and Bergman approximation of geodesics (after Phong–Sturm and Berndtsson)..Each chapter can be read independently and is based on a series of lectures by?R. Berman,
出版日期Book 2012
關(guān)鍵詞32-XX, 53-XX, 35-XX, 14-XX; Complex Monge-Ampere equations; Geodesics in the space of Kaehler metrics;
版次1
doihttps://doi.org/10.1007/978-3-642-23669-3
isbn_softcover978-3-642-23668-6
isbn_ebook978-3-642-23669-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 2012
The information of publication is updating

書(shū)目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics影響因子(影響力)




書(shū)目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics影響因子(影響力)學(xué)科排名




書(shū)目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics被引頻次




書(shū)目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics被引頻次學(xué)科排名




書(shū)目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics年度引用




書(shū)目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics年度引用學(xué)科排名




書(shū)目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics讀者反饋




書(shū)目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:08:16 | 只看該作者
Monge–Ampère Equations on Complex Manifolds with Boundary
板凳
發(fā)表于 2025-3-22 02:56:42 | 只看該作者
地板
發(fā)表于 2025-3-22 06:10:00 | 只看該作者
0075-8434 irenberg–Spruck (after Guan, Chen and Blocki) and Bergman approximation of geodesics (after Phong–Sturm and Berndtsson)..Each chapter can be read independently and is based on a series of lectures by?R. Berman,978-3-642-23668-6978-3-642-23669-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
5#
發(fā)表于 2025-3-22 12:39:48 | 只看該作者
Vincent GuedjThe first self contained presentation of Krylov‘s stochastic analysis for the complex Monge-Ampere equation.A comprehensive presentation of Yau‘s proof of the Calabi conjecture.A great part of the mat
6#
發(fā)表于 2025-3-22 15:08:28 | 只看該作者
7#
發(fā)表于 2025-3-22 19:17:43 | 只看該作者
Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics978-3-642-23669-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
8#
發(fā)表于 2025-3-23 00:31:39 | 只看該作者
9#
發(fā)表于 2025-3-23 02:11:18 | 只看該作者
10#
發(fā)表于 2025-3-23 06:59:25 | 只看該作者
Book 2012etric properties of solutions, approximation) on compact K?hler manifolds (with or without boundary)..These operators are of central use in several fundamental problems of complex differential geometry (K?hler–Einstein equation, uniqueness of constant scalar curvature metrics), complex analysis and
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
日照市| 绥宁县| 运城市| 建瓯市| 彰化市| 长阳| 宿迁市| 泰来县| 寿阳县| 德令哈市| 越西县| 巴林右旗| 石楼县| 旅游| 竹山县| 仙游县| 沙雅县| 莒南县| 屏东市| 淮安市| 吉隆县| 东方市| 镇雄县| 高密市| 吉木乃县| 建始县| 无为县| 定襄县| 来凤县| 永济市| 资源县| 河北区| 黄山市| 萝北县| 淮南市| 濮阳县| 天峻县| 天气| 象山县| 精河县| 永年县|