找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics; Vincent Guedj Book 2012 Springer-Verlag Berlin Heidelberg 201

[復制鏈接]
查看: 48008|回復: 35
樓主
發(fā)表于 2025-3-21 18:34:34 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics
編輯Vincent Guedj
視頻videohttp://file.papertrans.cn/232/231473/231473.mp4
概述The first self contained presentation of Krylov‘s stochastic analysis for the complex Monge-Ampere equation.A comprehensive presentation of Yau‘s proof of the Calabi conjecture.A great part of the mat
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics;  Vincent Guedj Book 2012 Springer-Verlag Berlin Heidelberg 201
描述.The purpose of these lecture notes is to provide an introduction to the theory of complex Monge–Ampère operators (definition, regularity issues, geometric properties of solutions, approximation) on compact K?hler manifolds (with or without boundary)..These operators are of central use in several fundamental problems of complex differential geometry (K?hler–Einstein equation, uniqueness of constant scalar curvature metrics), complex analysis and dynamics. The topics covered include, the Dirichlet problem (after Bedford–Taylor), Monge–Ampère foliations and laminated currents, polynomial hulls and Perron envelopes with no analytic structure, a self-contained presentation of Krylov regularity results, a modernized proof of the Calabi–Yau theorem (after Yau and Kolodziej), an introduction to infinite dimensional riemannian geometry, geometric structures on spaces of K?hler metrics (after Mabuchi, Semmes and Donaldson), generalizations of the regularity theory of Caffarelli–Kohn–Nirenberg–Spruck (after Guan, Chen and Blocki) and Bergman approximation of geodesics (after Phong–Sturm and Berndtsson)..Each chapter can be read independently and is based on a series of lectures by?R. Berman,
出版日期Book 2012
關鍵詞32-XX, 53-XX, 35-XX, 14-XX; Complex Monge-Ampere equations; Geodesics in the space of Kaehler metrics;
版次1
doihttps://doi.org/10.1007/978-3-642-23669-3
isbn_softcover978-3-642-23668-6
isbn_ebook978-3-642-23669-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 2012
The information of publication is updating

書目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics影響因子(影響力)




書目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics影響因子(影響力)學科排名




書目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics網(wǎng)絡公開度




書目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics網(wǎng)絡公開度學科排名




書目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics被引頻次




書目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics被引頻次學科排名




書目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics年度引用




書目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics年度引用學科排名




書目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics讀者反饋




書目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-22 00:08:16 | 只看該作者
Monge–Ampère Equations on Complex Manifolds with Boundary
板凳
發(fā)表于 2025-3-22 02:56:42 | 只看該作者
地板
發(fā)表于 2025-3-22 06:10:00 | 只看該作者
0075-8434 irenberg–Spruck (after Guan, Chen and Blocki) and Bergman approximation of geodesics (after Phong–Sturm and Berndtsson)..Each chapter can be read independently and is based on a series of lectures by?R. Berman,978-3-642-23668-6978-3-642-23669-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
5#
發(fā)表于 2025-3-22 12:39:48 | 只看該作者
Vincent GuedjThe first self contained presentation of Krylov‘s stochastic analysis for the complex Monge-Ampere equation.A comprehensive presentation of Yau‘s proof of the Calabi conjecture.A great part of the mat
6#
發(fā)表于 2025-3-22 15:08:28 | 只看該作者
7#
發(fā)表于 2025-3-22 19:17:43 | 只看該作者
Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics978-3-642-23669-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
8#
發(fā)表于 2025-3-23 00:31:39 | 只看該作者
9#
發(fā)表于 2025-3-23 02:11:18 | 只看該作者
10#
發(fā)表于 2025-3-23 06:59:25 | 只看該作者
Book 2012etric properties of solutions, approximation) on compact K?hler manifolds (with or without boundary)..These operators are of central use in several fundamental problems of complex differential geometry (K?hler–Einstein equation, uniqueness of constant scalar curvature metrics), complex analysis and
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 10:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
唐山市| 黑山县| 华阴市| 绵竹市| 江山市| 华坪县| 融水| 新蔡县| 清涧县| 浦江县| 甘泉县| 栾川县| 左云县| 宜川县| 论坛| 霍城县| 花垣县| 渑池县| 泊头市| 双流县| 万荣县| 甘泉县| 汶上县| 祁连县| 井研县| 阳城县| 竹北市| 翁源县| 清丰县| 北碚区| 绥中县| 杂多县| 乾安县| 石楼县| 朝阳市| 满洲里市| 旺苍县| 富源县| 张家港市| 南木林县| 疏附县|