找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Kleinian Groups; Angel Cano,Juan Pablo Navarrete,José Seade Book 2013 Springer Basel 2013 Kleinian groups.complex hyperbolic geome

[復(fù)制鏈接]
樓主: CLAST
21#
發(fā)表于 2025-3-25 04:31:58 | 只看該作者
§ 6 Die Verm?gensrechnung des Bundese constant negative holomorphic curvature. This is analogous to but different from the real hyperbolic space. In the complex case, the sectional curvature is constant on complex lines, but it changes when we consider real 2-planes which are not complex lines.
22#
發(fā)表于 2025-3-25 07:48:53 | 只看該作者
23#
發(fā)表于 2025-3-25 14:17:49 | 只看該作者
24#
發(fā)表于 2025-3-25 18:45:14 | 只看該作者
§ 6 Die Verm?gensrechnung des Bundese constant negative holomorphic curvature. This is analogous to but different from the real hyperbolic space. In the complex case, the sectional curvature is constant on complex lines, but it changes when we consider real 2-planes which are not complex lines.
25#
發(fā)表于 2025-3-25 20:05:18 | 只看該作者
https://doi.org/10.1007/978-3-662-54308-5in . that illustrates the diversity of possibilities one has when defining the notion of “l(fā)imit set”. In this example we see that there are several nonequivalent such notions, each having its own interest.
26#
發(fā)表于 2025-3-26 00:48:02 | 只看該作者
27#
發(fā)表于 2025-3-26 07:25:48 | 只看該作者
Kommentar zu C. Knill und D. Lehmkuhlsider Kleinian subgroups of PSL(3, .) whose geometry and dynamics are “governed” by a subgroup of PSL(2, .). That is the subject we address in this chapter. The corresponding subgroup in PSL(2 ,.) is the .. These groups play a significant role in the classification theorems we give in ..
28#
發(fā)表于 2025-3-26 09:44:37 | 只看該作者
29#
發(fā)表于 2025-3-26 13:16:41 | 只看該作者
Staatsentwicklung und Policyforschungs that every compact Riemann surface can be obtained as the quotient of an open set in the Riemann sphere S2 which is invariant under the action of a Schottky group. On the other hand, the limit sets of Schottky groups have rich and fascinating geometry and dynamics, which has inspired much of the c
30#
發(fā)表于 2025-3-26 18:00:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 12:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西贡区| 泰来县| 浑源县| 大新县| 星子县| 措勤县| 永靖县| 博兴县| 古田县| 绿春县| 毕节市| 郑州市| 楚雄市| 崇文区| 平远县| 固安县| 惠东县| 平山县| 封开县| 满城县| 县级市| 闽侯县| 玛沁县| 青州市| 湛江市| 新竹市| 靖江市| 安福县| 晋宁县| 大厂| 新昌县| 德令哈市| 黄石市| 若尔盖县| 古交市| 铁岭市| 贵州省| 阿坝县| 甘孜| 嘉义市| 扎鲁特旗|