找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Kleinian Groups; Angel Cano,Juan Pablo Navarrete,José Seade Book 2013 Springer Basel 2013 Kleinian groups.complex hyperbolic geome

[復(fù)制鏈接]
樓主: CLAST
11#
發(fā)表于 2025-3-23 10:51:11 | 只看該作者
12#
發(fā)表于 2025-3-23 14:33:29 | 只看該作者
13#
發(fā)表于 2025-3-23 20:46:03 | 只看該作者
Complex Hyperbolic Geometry,e constant negative holomorphic curvature. This is analogous to but different from the real hyperbolic space. In the complex case, the sectional curvature is constant on complex lines, but it changes when we consider real 2-planes which are not complex lines.
14#
發(fā)表于 2025-3-24 00:03:11 | 只看該作者
Complex Kleinian Groups,in . that illustrates the diversity of possibilities one has when defining the notion of “l(fā)imit set”. In this example we see that there are several nonequivalent such notions, each having its own interest.
15#
發(fā)表于 2025-3-24 04:14:39 | 只看該作者
Geometry and Dynamics of Automorphisms of ,,tion for the elements in PU(2, 1) ? PSL(3,.). Just as in that case, and more generally for the isometries of manifolds of negative curvature, the automorphisms of . can also be classified into the three types of elliptic, parabolic and loxodromic (or hyperbolic) elements, according to their geometry
16#
發(fā)表于 2025-3-24 08:18:05 | 只看該作者
17#
發(fā)表于 2025-3-24 13:05:06 | 只看該作者
The Limit Set in Dimension 2,uch notions, each with its own properties and characteristics, providing each a different kind of information about the geometry and dynamics of the group. The Kulkarni limit set has the property of “quasi-minimality”, which is interesting for understanding the minimal invariant sets; and the action
18#
發(fā)表于 2025-3-24 15:24:34 | 只看該作者
Complex Schottky Groups,s that every compact Riemann surface can be obtained as the quotient of an open set in the Riemann sphere S2 which is invariant under the action of a Schottky group. On the other hand, the limit sets of Schottky groups have rich and fascinating geometry and dynamics, which has inspired much of the c
19#
發(fā)表于 2025-3-24 22:00:33 | 只看該作者
Kleinian Groups and Twistor Theory,s a rich interplay between the conformal geometry on even-dimensional spheres and the holomorphic on their twistor spaces. Here we follow [202] and explain how the relations between the geometry of a manifold and the geometry of its twistor space, can be carried forward to dynamics. In this way we g
20#
發(fā)表于 2025-3-24 23:57:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
老河口市| 双鸭山市| 汝城县| 富裕县| 汨罗市| 宣武区| 奉节县| 全椒县| 镇宁| 县级市| 龙口市| 临泽县| 九江市| 大荔县| 长治市| 铅山县| 瓮安县| 抚松县| 石景山区| 攀枝花市| 靖远县| 万全县| 阳曲县| 托克托县| 大冶市| 湄潭县| 阳谷县| 澄江县| 湘潭县| 中牟县| 乐陵市| 九江市| 万全县| 思南县| 修水县| 灯塔市| 卓尼县| 布拖县| 孝感市| 五大连池市| 丹巴县|