找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Geometry and Dynamics; The Abel Symposium 2 John Erik Forn?ss,Marius Irgens,Erlend Forn?ss Wol Conference proceedings 2015 Springer

[復(fù)制鏈接]
樓主: 拿著錫
31#
發(fā)表于 2025-3-26 23:52:42 | 只看該作者
Abel Symposiahttp://image.papertrans.cn/c/image/231448.jpg
32#
發(fā)表于 2025-3-27 04:35:11 | 只看該作者
Lorina Buhr,Stefanie Hammer,Hagen Sch?lzeled properties of their multiplier ideal sheaves. In case the curvature is strictly positive, the prototype is the well known Nadel vanishing theorem, which is itself a generalized analytic version of the fundamental Kawamata-Viehweg vanishing theorem of algebraic geometry. We are interested here in
33#
發(fā)表于 2025-3-27 06:56:38 | 只看該作者
34#
發(fā)表于 2025-3-27 11:11:39 | 只看該作者
Rente und Zivilgesellschaft in ?gyptenurveys in differential geometry. Vol. XIV. Geometry of Riemann surfaces and their moduli spaces. Volume 14 of surveys in differential geometry. International Press, Somerville, pp 111–129, 2009; Grushevsky and Krichever, Foliations on the moduli space of curves, vanishing in cohomology, and Calogero
35#
發(fā)表于 2025-3-27 13:41:43 | 只看該作者
Martin Beck,Andreas Boeckh,Peter Pawelkain .. with .. Let . be a holomorphic map sending .. into .. Assume . does not send a neighborhood of .. in .. into .. We show that . is necessarily CR transversal to .. at any point. Equivalently, we show that . is a local CR embedding from .. into ..
36#
發(fā)表于 2025-3-27 19:59:53 | 只看該作者
37#
發(fā)表于 2025-3-27 23:37:15 | 只看該作者
38#
發(fā)表于 2025-3-28 02:40:07 | 只看該作者
Soziologie der Reformbewegungen,us settings according to Ohsawa’s series papers, and present our optimal versions of Ohsawa’s .. extension theorems. We’ll discuss the problem in a general setting and present a solution of the problem in the general setting. We’ll give some applications of our results including a solution of the eq
39#
發(fā)表于 2025-3-28 06:23:02 | 只看該作者
Complex Geometry and Dynamics978-3-319-20337-9Series ISSN 2193-2808 Series E-ISSN 2197-8549
40#
發(fā)表于 2025-3-28 11:52:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 21:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扎赉特旗| 池州市| 海阳市| 库车县| 乐昌市| 鄄城县| 白朗县| 元朗区| 六盘水市| 安岳县| 瑞安市| 佛学| 合作市| 分宜县| 子长县| 金秀| 文水县| 布拖县| 宝应县| 彭阳县| 泗洪县| 浙江省| 双鸭山市| 西藏| 河间市| 张北县| 灵石县| 佛教| 陵川县| 保德县| 迁安市| 阿克苏市| 麦盖提县| 陆丰市| 普陀区| 城固县| 屏南县| 法库县| 合阳县| 盐亭县| 邵武市|