找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Geometry and Dynamics; The Abel Symposium 2 John Erik Forn?ss,Marius Irgens,Erlend Forn?ss Wol Conference proceedings 2015 Springer

[復(fù)制鏈接]
樓主: 拿著錫
11#
發(fā)表于 2025-3-23 11:01:54 | 只看該作者
12#
發(fā)表于 2025-3-23 16:29:10 | 只看該作者
13#
發(fā)表于 2025-3-23 21:37:39 | 只看該作者
14#
發(fā)表于 2025-3-23 22:17:32 | 只看該作者
On the Cohomology of Pseudoeffective Line Bundles,ed properties of their multiplier ideal sheaves. In case the curvature is strictly positive, the prototype is the well known Nadel vanishing theorem, which is itself a generalized analytic version of the fundamental Kawamata-Viehweg vanishing theorem of algebraic geometry. We are interested here in
15#
發(fā)表于 2025-3-24 02:47:34 | 只看該作者
16#
發(fā)表于 2025-3-24 08:54:17 | 只看該作者
Real-Normalized Differentials and the Elliptic Calogero-Moser System,urveys in differential geometry. Vol. XIV. Geometry of Riemann surfaces and their moduli spaces. Volume 14 of surveys in differential geometry. International Press, Somerville, pp 111–129, 2009; Grushevsky and Krichever, Foliations on the moduli space of curves, vanishing in cohomology, and Calogero
17#
發(fā)表于 2025-3-24 14:02:08 | 只看該作者
18#
發(fā)表于 2025-3-24 16:45:00 | 只看該作者
19#
發(fā)表于 2025-3-24 22:34:46 | 只看該作者
20#
發(fā)表于 2025-3-24 23:24:05 | 只看該作者
A Survey on ,, Extension Problem,us settings according to Ohsawa’s series papers, and present our optimal versions of Ohsawa’s .. extension theorems. We’ll discuss the problem in a general setting and present a solution of the problem in the general setting. We’ll give some applications of our results including a solution of the eq
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 19:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
会同县| 土默特右旗| 麻阳| 合水县| 金川县| 葵青区| 永登县| 千阳县| 龙游县| 石泉县| 古交市| 唐海县| 通海县| 罗田县| 宝清县| 尖扎县| 江源县| 建湖县| 永修县| 嘉义县| 水富县| 巨野县| 濮阳市| 都江堰市| 乌兰浩特市| 宜宾市| 弋阳县| 四平市| 巴里| 衡阳县| 东乡族自治县| 五河县| 日喀则市| 威远县| 贡觉县| 喜德县| 昆山市| 舞钢市| 万州区| 长寿区| 宣恩县|