找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis and Special Topics in Harmonic Analysis; Carlos A. Berenstein,Roger Gay Book 1995 Springer-Verlag New York, Inc. 1995 Com

[復(fù)制鏈接]
樓主: Julienne
21#
發(fā)表于 2025-3-25 07:04:39 | 只看該作者
22#
發(fā)表于 2025-3-25 11:17:22 | 只看該作者
Spracherwerb in der Interaktion,he . of . and . the . (Sometimes the . are called the . especially in the Russian literature. In some contexts .= .λ.,λ. ∈? , and the λ. are called the frequencies and τ. = 2./λ.(when λ. ≠ 0) the periods; clearly e. periodic of period τ..) It is immediate that there is a unique analytic functional .
23#
發(fā)表于 2025-3-25 15:22:38 | 只看該作者
24#
發(fā)表于 2025-3-25 16:46:07 | 只看該作者
Sprechwissenschaft & Psycholinguistik 5tar-shaped with respect to the origin, to which . admits an analytic continuation. Let us denote by .(.) that domain. (Why is it well defined?) We shall obtain .(.) as the union of certain domains .(.),such that in each of them we shall be able to describe explicitly the analytic continuation of .,
25#
發(fā)表于 2025-3-25 23:13:31 | 只看該作者
https://doi.org/10.1007/978-3-322-97023-7s ., . ∈ ?, in their study of the vibrating string. It is known that every .-function which is 2π-periodic in the real line has an expansion of the form En . (we remind the reader one can estimate these coefficients . very precisely, and that we do not need to restrict ourselves to .-functions). It
26#
發(fā)表于 2025-3-26 00:49:33 | 只看該作者
https://doi.org/10.1007/978-1-4613-8445-8Complex analysis; calculus; differential equation; functional analysis; harmonic analysis
27#
發(fā)表于 2025-3-26 06:51:17 | 只看該作者
28#
發(fā)表于 2025-3-26 11:47:24 | 只看該作者
Boundary Values of Holomorphic Functions and Analytic Functionals,ntwise, almost everywhere, or in some generalized sense, for instance, in the sense of distributions, as in the Edge-of-the-Wedge Theorem (see [BG, Theorem 3.6.23], [Beur]). Let us make these concepts more precise.
29#
發(fā)表于 2025-3-26 15:15:56 | 只看該作者
30#
發(fā)表于 2025-3-26 17:30:07 | 只看該作者
Exponential Polynomials,he . of . and . the . (Sometimes the . are called the . especially in the Russian literature. In some contexts .= .λ.,λ. ∈? , and the λ. are called the frequencies and τ. = 2./λ.(when λ. ≠ 0) the periods; clearly e. periodic of period τ..) It is immediate that there is a unique analytic functional .
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仁寿县| 兴文县| 眉山市| 兖州市| 黄梅县| 彩票| 运城市| 清河县| 临洮县| 孟连| 永城市| 通化县| 双柏县| 巨鹿县| 年辖:市辖区| 高台县| 保康县| 桑日县| 龙南县| 广宗县| 井陉县| 沭阳县| 桃源县| 福泉市| 安新县| 神农架林区| 越西县| 临城县| 克什克腾旗| 岐山县| 洛川县| 阿合奇县| 花莲县| 清徐县| 乌苏市| 文安县| 遵义市| 武宣县| 三穗县| 宜良县| 重庆市|