找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis and Special Topics in Harmonic Analysis; Carlos A. Berenstein,Roger Gay Book 1995 Springer-Verlag New York, Inc. 1995 Com

[復(fù)制鏈接]
查看: 16210|回復(fù): 36
樓主
發(fā)表于 2025-3-21 19:10:01 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Complex Analysis and Special Topics in Harmonic Analysis
編輯Carlos A. Berenstein,Roger Gay
視頻videohttp://file.papertrans.cn/232/231377/231377.mp4
圖書封面Titlebook: Complex Analysis and Special Topics in Harmonic Analysis;  Carlos A. Berenstein,Roger Gay Book 1995 Springer-Verlag New York, Inc. 1995 Com
描述A companion volume to the text "Complex Variables: An Introduction" by the same authors, this book further develops the theory, continuing to emphasize the role that the Cauchy-Riemann equation plays in modern complex analysis. Topics considered include: Boundary values of holomorphic functions in the sense of distributions; interpolation problems and ideal theory in algebras of entire functions with growth conditions; exponential polynomials; the G transform and the unifying role it plays in complex analysis and transcendental number theory; summation methods; and the theorem of L. Schwarz concerning the solutions of a homogeneous convolution equation on the real line and its applications in harmonic function theory.
出版日期Book 1995
關(guān)鍵詞Complex analysis; calculus; differential equation; functional analysis; harmonic analysis
版次1
doihttps://doi.org/10.1007/978-1-4613-8445-8
isbn_softcover978-1-4613-8447-2
isbn_ebook978-1-4613-8445-8
copyrightSpringer-Verlag New York, Inc. 1995
The information of publication is updating

書目名稱Complex Analysis and Special Topics in Harmonic Analysis影響因子(影響力)




書目名稱Complex Analysis and Special Topics in Harmonic Analysis影響因子(影響力)學(xué)科排名




書目名稱Complex Analysis and Special Topics in Harmonic Analysis網(wǎng)絡(luò)公開度




書目名稱Complex Analysis and Special Topics in Harmonic Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Complex Analysis and Special Topics in Harmonic Analysis被引頻次




書目名稱Complex Analysis and Special Topics in Harmonic Analysis被引頻次學(xué)科排名




書目名稱Complex Analysis and Special Topics in Harmonic Analysis年度引用




書目名稱Complex Analysis and Special Topics in Harmonic Analysis年度引用學(xué)科排名




書目名稱Complex Analysis and Special Topics in Harmonic Analysis讀者反饋




書目名稱Complex Analysis and Special Topics in Harmonic Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:34:45 | 只看該作者
Spracherwerb in der Interaktion,here the frequencies . are purely imaginary, i.e., . = .λ., λ .then . is the Fourier transform of a distribution .∈.(?). That is, we let.with . the Dirac mass at the point λ.∈? (acting on .∞ functions in ? and
板凳
發(fā)表于 2025-3-22 02:12:37 | 只看該作者
Exponential Polynomials,here the frequencies . are purely imaginary, i.e., . = .λ., λ .then . is the Fourier transform of a distribution .∈.(?). That is, we let.with . the Dirac mass at the point λ.∈? (acting on .∞ functions in ? and
地板
發(fā)表于 2025-3-22 05:41:29 | 只看該作者
5#
發(fā)表于 2025-3-22 12:10:49 | 只看該作者
6#
發(fā)表于 2025-3-22 16:53:46 | 只看該作者
7#
發(fā)表于 2025-3-22 19:14:24 | 只看該作者
8#
發(fā)表于 2025-3-22 21:44:03 | 只看該作者
9#
發(fā)表于 2025-3-23 04:00:18 | 只看該作者
Harmonic Analysis,was the work of Fourier [Fo] on heat conduction that showed, once and for all, the importance and the interest of such expansions, and since then they have been called Fourier expansions. It is clear that another way of saying that a function . is periodic with period τ is to say that . satisfies the convolution equation
10#
發(fā)表于 2025-3-23 09:20:38 | 只看該作者
Book 1995e G transform and the unifying role it plays in complex analysis and transcendental number theory; summation methods; and the theorem of L. Schwarz concerning the solutions of a homogeneous convolution equation on the real line and its applications in harmonic function theory.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 09:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
成武县| 兴安盟| 肥西县| 聊城市| 若羌县| 长阳| 诸暨市| 修水县| 平舆县| 锡林浩特市| 微山县| 建宁县| 呼图壁县| 沁阳市| 木兰县| 蒲城县| 昌江| 惠来县| 虎林市| 宜昌市| 浪卡子县| 壤塘县| 沙田区| 荆门市| 常德市| 从江县| 隆德县| 太保市| 响水县| 云浮市| 巴东县| 昌图县| 大同市| 乌拉特前旗| 思茅市| 三门峡市| 晋江市| 莎车县| 上栗县| 余姚市| 富源县|