找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Comparison Finsler Geometry; Shin-ichi Ohta Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer

[復(fù)制鏈接]
樓主: 劉興旺
51#
發(fā)表于 2025-3-30 08:21:54 | 只看該作者
https://doi.org/10.1007/BFb0116611 introduce Berwald spaces, Hilbert and Funk geometries, and Teichmüller spaces and discuss their characteristic properties..We will revisit some of these examples in Chap. . in the context of measured Finsler manifolds (i.e., Finsler manifolds equipped with measures).
52#
發(fā)表于 2025-3-30 12:48:27 | 只看該作者
53#
發(fā)表于 2025-3-30 16:58:14 | 只看該作者
Properties of Geodesicstion for the energy functional. To this end, some important quantities such as the fundamental and Cartan tensors are introduced. We will see that the metric definition of geodesics coincides with the variational definition as solutions to the geodesic equation. We also prove the Finsler analogue of
54#
發(fā)表于 2025-3-30 21:59:30 | 只看該作者
CurvatureThis argument goes back to Ludwig Berwald’s important posthumous paper..The appearance of a geodesic variation reminds us of a characterization of covariant derivatives by using the Riemannian metric .. associated with a vector field .? whose integral curves are geodesics. In fact, this viewpoint le
55#
發(fā)表于 2025-3-31 04:02:53 | 只看該作者
56#
發(fā)表于 2025-3-31 06:06:25 | 只看該作者
Variation Formulas for Arclength along geodesics, including the study of cut and conjugate points. The first variation formula is closely related to the geodesic equation, which was introduced as the Euler–Lagrange equation for the energy functional. The second variation formula will be related to the flag curvature.
57#
發(fā)表于 2025-3-31 12:52:44 | 只看該作者
58#
發(fā)表于 2025-3-31 14:18:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 03:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泗阳县| 汝南县| 武冈市| 贵南县| 历史| 来凤县| 诸城市| 临清市| 连州市| 民勤县| 大邑县| 中卫市| 富宁县| 鱼台县| 嵊泗县| 平谷区| 镇巴县| 兰考县| 绥江县| 鹤壁市| 扶绥县| 镇江市| 萨迦县| 龙门县| 满城县| 金阳县| 原阳县| 湘乡市| 开阳县| 阿合奇县| 银川市| 福清市| 丹寨县| 陈巴尔虎旗| 修文县| 米脂县| 怀安县| 丰县| 资溪县| 东乡族自治县| 乡宁县|