找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Comparison Finsler Geometry; Shin-ichi Ohta Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer

[復制鏈接]
樓主: 劉興旺
21#
發(fā)表于 2025-3-25 06:23:51 | 只看該作者
22#
發(fā)表于 2025-3-25 09:46:31 | 只看該作者
Computation of eigenvalues and eigenvectors,This argument goes back to Ludwig Berwald’s important posthumous paper..The appearance of a geodesic variation reminds us of a characterization of covariant derivatives by using the Riemannian metric .. associated with a vector field .? whose integral curves are geodesics. In fact, this viewpoint le
23#
發(fā)表于 2025-3-25 14:09:35 | 只看該作者
https://doi.org/10.1007/BFb0116611 introduce Berwald spaces, Hilbert and Funk geometries, and Teichmüller spaces and discuss their characteristic properties..We will revisit some of these examples in Chap. . in the context of measured Finsler manifolds (i.e., Finsler manifolds equipped with measures).
24#
發(fā)表于 2025-3-25 17:37:11 | 只看該作者
25#
發(fā)表于 2025-3-25 21:17:59 | 只看該作者
26#
發(fā)表于 2025-3-26 00:33:28 | 只看該作者
27#
發(fā)表于 2025-3-26 07:22:50 | 只看該作者
28#
發(fā)表于 2025-3-26 11:02:04 | 只看該作者
29#
發(fā)表于 2025-3-26 14:49:27 | 只看該作者
Compressive Sensing for Vision,establish the existence and the regularity of global solutions to the heat equation. Coupled with the Bochner inequalities in the previous chapter, the analysis of heat flow leads to various analytic and geometric applications as we will see in the following chapters. We remark that, due to the nonl
30#
發(fā)表于 2025-3-26 17:10:15 | 只看該作者
Sparse Representations in Radar,we present three kinds of applications of the Bochner inequality by generalizing the Γ-calculus to the Finsler setting (the so-called . Γ.)..Throughout these three chapters, we assume the compactness of . to avoid delicate technical issues. In this chapter, we show the ..- and ..-. followed by the .
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 03:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
五大连池市| 余干县| 肥城市| 余庆县| 沙雅县| 内江市| 巴东县| 芮城县| 靖西县| 扎兰屯市| 巍山| 宜都市| 丰原市| 会理县| 兴和县| 眉山市| 黔西| 丽江市| 萍乡市| 江孜县| 舟山市| 天峨县| 拉孜县| 灵寿县| 赣榆县| 上犹县| 盐亭县| 新疆| 子洲县| 襄汾县| 阳山县| 达孜县| 镇巴县| 南木林县| 鄂托克前旗| 漠河县| 龙泉市| 江阴市| 北流市| 赫章县| 广州市|