找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Commutative Algebras of Toeplitz Operators on the Bergman Space; Nikolai L. Vasilevski Book 2008 Birkh?user Basel 2008 Bergman space.Compl

[復制鏈接]
樓主: palliative
21#
發(fā)表于 2025-3-25 06:25:53 | 只看該作者
Toeplitz Operators on the Unit Disk with Radial Symbols,As follows, for example, from Theorem 2.8.3, the Toeplitz operator with radial defining symbols ., which is continuous at the boundary point 1, has a trivial structure, nothing but a compact perturbation of a scalar operator, .=..
22#
發(fā)表于 2025-3-25 07:47:07 | 只看該作者
23#
發(fā)表于 2025-3-25 13:41:45 | 只看該作者
Anatomy of the Algebra Generated by Toeplitz Operators with Piece-wise continuous Symbols,In this chapter we continue the study of the .-algebra generated by Toeplitz operators . with piece-wise continuous defining symbols . acting on the Bergman space (.) on the unit disk .. Our aim here is to describe explicitly each operator from this algebra and to characterize the Toeplitz operators which belong to the algebra.
24#
發(fā)表于 2025-3-25 17:18:31 | 只看該作者
25#
發(fā)表于 2025-3-25 20:56:03 | 只看該作者
Prologue,not exceptional in this sense. It will be used systematically in the book and will be supplied with different adjectives clarifying its different meanings: Fredholm symbol, defining symbol, Wick symbol, anti-Wick symbol, etc. That is why we would like to comment first on its meanings and usage.
26#
發(fā)表于 2025-3-26 03:02:10 | 只看該作者
Commutative Algebras of Toeplitz Operators,he unit disk, considered as the hyperbolic plane. Theorem 10.4.1 shows that the same classes of defining symbols generate commutative .-algebras of Toeplitz operators on . Bergman space. At the same time the principal question, .-., has remained open.
27#
發(fā)表于 2025-3-26 05:14:58 | 只看該作者
https://doi.org/10.1007/978-3-7643-8726-6Bergman space; Complex analysis; Operator algebra; Operator theory; Toeplitz operator
28#
發(fā)表于 2025-3-26 10:48:51 | 只看該作者
Birkh?user Basel 2008
29#
發(fā)表于 2025-3-26 15:37:05 | 只看該作者
30#
發(fā)表于 2025-3-26 17:13:09 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-21 19:07
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宜州市| 襄城县| 鹿泉市| 浪卡子县| 台中市| 微山县| 和龙市| 永年县| 鹤峰县| 田林县| 双桥区| 邹城市| 厦门市| 于都县| 辉县市| 永泰县| 玉溪市| 德保县| 化德县| 哈巴河县| 巧家县| 上犹县| 威宁| 安顺市| 福海县| 攀枝花市| 阳新县| 平遥县| 宜君县| 德清县| 晋宁县| 响水县| 隆德县| 寿阳县| 岐山县| 区。| 云霄县| 屯门区| 进贤县| 莱芜市| 娱乐|