找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Commutative Algebras of Toeplitz Operators on the Bergman Space; Nikolai L. Vasilevski Book 2008 Birkh?user Basel 2008 Bergman space.Compl

[復(fù)制鏈接]
樓主: palliative
31#
發(fā)表于 2025-3-26 23:06:09 | 只看該作者
Thomas W. Wolfe,The RAND Corporationhe unit disk, considered as the hyperbolic plane. Theorem 10.4.1 shows that the same classes of defining symbols generate commutative .-algebras of Toeplitz operators on . Bergman space. At the same time the principal question, .-., has remained open.
32#
發(fā)表于 2025-3-27 04:50:25 | 只看該作者
0255-0156 ok leads readers to new, up-to-date results on the currently.This book is devoted to the spectral theory of commutative C*-algebras of Toeplitz operators on the Bergman space and its applications. For each such commutative algebra there is a unitary operator which reduces Toeplitz operators from thi
33#
發(fā)表于 2025-3-27 09:00:59 | 只看該作者
34#
發(fā)表于 2025-3-27 11:54:30 | 只看該作者
Vegetative and Reproductive Morphology,n .. In the sequel we will consider another form of presentation of the weighted Bergman spaces, see (10.1.1), the space . which is parameterized by λ∈(?1, +∞) being connected with .∈(0, 1) by the rule ., see Section 10.1.
35#
發(fā)表于 2025-3-27 16:20:38 | 只看該作者
Vijayata Singh,Jogendra Singh,Awtar Singhere λ∈(?1, ∞), are natural and appropriate for Toeplitz operators with . symbols. One of our aims is a systematic study of . symbols. To avoid unnecessary technicalities in this chapter we will always assume that λ∈[0, ∞).
36#
發(fā)表于 2025-3-27 19:46:47 | 只看該作者
37#
發(fā)表于 2025-3-27 23:48:10 | 只看該作者
Dynamics of Properties of Toeplitz Operators with Radial Symbols,n .. In the sequel we will consider another form of presentation of the weighted Bergman spaces, see (10.1.1), the space . which is parameterized by λ∈(?1, +∞) being connected with .∈(0, 1) by the rule ., see Section 10.1.
38#
發(fā)表于 2025-3-28 03:40:15 | 只看該作者
Dynamics of Properties of Toeplitz Operators on the Upper Half-Plane: Parabolic Case,ere λ∈(?1, ∞), are natural and appropriate for Toeplitz operators with . symbols. One of our aims is a systematic study of . symbols. To avoid unnecessary technicalities in this chapter we will always assume that λ∈[0, ∞).
39#
發(fā)表于 2025-3-28 09:28:23 | 只看該作者
Dynamics of Properties of Toeplitz Operators on the Upper Half-Plane: Hyperbolic Case,ufficiently large class of them common to all admissible λ; moreover, we are especially interested in properties of Toeplitz operators for large values of λ. Thus it is convenient for us to consider λ belonging only to [0, ∞), which we will always assume in what follows.
40#
發(fā)表于 2025-3-28 11:15:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 22:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
富顺县| 子洲县| 周口市| 鄂托克前旗| 德庆县| 虞城县| 巴里| 定陶县| 平罗县| 惠州市| 中卫市| 南皮县| 日喀则市| 平和县| 霍山县| 芷江| 桓台县| 忻州市| 石景山区| 遵义县| 龙胜| 西城区| 淮北市| 陇川县| 阜南县| 梅州市| 许昌市| 孝感市| 华宁县| 安岳县| 区。| 汶川县| 衡山县| 泾川县| 哈尔滨市| 北碚区| 炉霍县| 监利县| 肇州县| 兖州市| 长顺县|