找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorics and Finite Geometry; Steven T. Dougherty Textbook 2020 The Editor(s) (if applicable) and The Author(s), under exclusive lice

[復(fù)制鏈接]
樓主: GUST
31#
發(fā)表于 2025-3-26 21:02:31 | 只看該作者
Designs,This chapter introduces the topic of finite combinatorial designs. The defining parameters of the designs are determined and their restrictions are proved. Special attention is given to Steiner triple systems, nets, and biplanes.
32#
發(fā)表于 2025-3-27 02:42:50 | 只看該作者
Combinatorial Objects,This chapter describes a series of combinatorial objects including Hadamard matrices, Latin hypercubes, association schemes, and partially ordered sets. The algebraic and combinatorial properties of these objects are discussed.
33#
發(fā)表于 2025-3-27 06:24:36 | 只看該作者
,Discrete Probability—A Return to Counting,This chapter gives a brief description of discrete probability. It uses the combinatorial counting properties developed earlier in the text to compute various probabilities.
34#
發(fā)表于 2025-3-27 09:45:07 | 只看該作者
Cryptology,This chapter introduces the fundamentals of cryptology. It describes the basic combinatorial principles involved in substitution ciphers and the German Enigma machine. It then develops the main public-key encryption systems including RSA, El Gamal, and the McEliece cryptographic system based on error-correcting codes.
35#
發(fā)表于 2025-3-27 15:45:36 | 只看該作者
Games and Designs,This chapter introduces a version of the well-known Tic-Tac-Toe game which can be played on designs and finite geometries. This game helps develop students’ geometric intuition. The theory of combinatorial games is applied to determine when the first player has a winning strategy and when the second player can force a draw.
36#
發(fā)表于 2025-3-27 19:26:03 | 只看該作者
37#
發(fā)表于 2025-3-28 00:10:45 | 只看該作者
38#
發(fā)表于 2025-3-28 02:20:35 | 只看該作者
Manish Kumar Singh,Kamlesh Kumar Raghuvanshiic including Fermat’s Little Theorem and Euler’s generalization. It gives foundational results on finite fields to prepare the reader for their use in finite geometry. It concludes with a description of geometric numbers, Catalan numbers, Stirling numbers, and the Towers of Hanoi.
39#
發(fā)表于 2025-3-28 08:32:25 | 只看該作者
Sèmévo Ida Tognisse,Jules Degilatructure is a group. It is generally the first structure one encounters in studying abstract algebra. We shall begin with a very elementary study of finite groups, and then we shall study the groups associated with various combinatorial structures.
40#
發(fā)表于 2025-3-28 12:22:45 | 只看該作者
Steven T. DoughertyProvides a gentle introduction to combinatorics, finite geometry and related topics.Covers a broad range of related topics including error-connecting codes, cryptology and combinatorial game theory.In
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 16:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玉环县| 富宁县| 安阳县| 永春县| 平塘县| 河曲县| 建德市| 怀安县| 南京市| 格尔木市| 南乐县| 镶黄旗| 思南县| 嘉荫县| 英超| 醴陵市| 昌江| 光山县| 涿州市| 普宁市| 桃园市| 神农架林区| 石渠县| 神池县| 鹤峰县| 兰州市| 靖宇县| 利川市| 永顺县| 大足县| 龙里县| 永州市| 陈巴尔虎旗| 军事| 屏东市| 苏尼特右旗| 丰城市| 遂溪县| 安龙县| 丹寨县| 新郑市|