找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorics and Finite Geometry; Steven T. Dougherty Textbook 2020 The Editor(s) (if applicable) and The Author(s), under exclusive lice

[復制鏈接]
樓主: GUST
11#
發(fā)表于 2025-3-23 13:01:10 | 只看該作者
Automorphism Groups,tructure is a group. It is generally the first structure one encounters in studying abstract algebra. We shall begin with a very elementary study of finite groups, and then we shall study the groups associated with various combinatorial structures.
12#
發(fā)表于 2025-3-23 15:46:32 | 只看該作者
13#
發(fā)表于 2025-3-23 18:42:56 | 只看該作者
Sèmévo Ida Tognisse,Jules Degilatructure is a group. It is generally the first structure one encounters in studying abstract algebra. We shall begin with a very elementary study of finite groups, and then we shall study the groups associated with various combinatorial structures.
14#
發(fā)表于 2025-3-23 23:38:43 | 只看該作者
15#
發(fā)表于 2025-3-24 04:36:31 | 只看該作者
16#
發(fā)表于 2025-3-24 07:25:45 | 只看該作者
Anuj Gupta,Kapil Gupta,Sumit SarohaThis chapter describes mutually orthogonal Latin squares by beginning with their origins in the 36 officer problem. It describes the major open problems concerning Latin squares. Further results are given describing the structure of Latin squares.
17#
發(fā)表于 2025-3-24 11:28:30 | 只看該作者
D. N. Katole,M. B. Daigavane,P. M. DaigavaneThis chapter gives fundamental results on finite affine and projective planes. It provides detailed proofs on various counting results concerning these planes such as the number of points, lines, points on a line, and lines through a point. It describes the canonical relation between affine planes and mutually orthogonal Latin squares.
18#
發(fā)表于 2025-3-24 17:31:28 | 只看該作者
Rashmi Ashok Panherkar,Prajakta VaidyaChapter 5 gives foundational results on graph theory including a study of simple and directed graphs. It investigates the coloring of graphs and the connection between directed graphs and relations.
19#
發(fā)表于 2025-3-24 23:03:22 | 只看該作者
20#
發(fā)表于 2025-3-24 23:14:51 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 16:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
聂拉木县| 曲沃县| 本溪市| 陆河县| 贡山| 海宁市| 资中县| 瑞昌市| 哈密市| 黄梅县| 商城县| 邯郸县| 南岸区| 新津县| 肥西县| 黔西县| 昆山市| 腾冲县| 泗洪县| 德昌县| 黄石市| 阿鲁科尔沁旗| 礼泉县| 武宁县| 宜宾县| 宣武区| 瑞金市| 苍梧县| 吕梁市| 武川县| 体育| 陆河县| 浦县| 鄢陵县| 蕲春县| 敦化市| 彰武县| 安达市| 高安市| 大名县| 嘉义县|