找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cohomology of Number Fields; Jürgen Neukirch,Alexander Schmidt,Kay Wingberg Book 2008Latest edition The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: Hypothesis
21#
發(fā)表于 2025-3-25 06:57:45 | 只看該作者
Cohomology of Profinite GroupsProfinite groups are topological groups which naturally occur in algebraic number theory as Galois groups of infinite field extensions or more generally as étale fundamental groups of schemes. Their cohomology groups often contain important arithmetic information.
22#
發(fā)表于 2025-3-25 09:20:45 | 只看該作者
23#
發(fā)表于 2025-3-25 12:52:51 | 只看該作者
Iwasawa ModulesThe Iwasawa algebra, usually denoted by the Greek letter Λ, is the complete group algebra . of a group Γ, which is . isomorphic to .. This means that we will not specify a particular isomorphism . or, equivalently, we will not fix a topological generator . of the procyclic group Γ.
24#
發(fā)表于 2025-3-25 19:06:27 | 只看該作者
Cohomology of Global FieldsHaving established the cohomology theory for local fields, we now begin its development for global fields, i.e. algebraic number fields and function fields in one variable over a finite field. The cohomology theory treats both types of fields equally.
25#
發(fā)表于 2025-3-25 23:03:56 | 只看該作者
26#
發(fā)表于 2025-3-26 03:22:19 | 只看該作者
https://doi.org/10.1007/978-3-540-37889-1Galois group; Galois groups; algebra; algebraic number field; algebraic number fields; algebraic number t
27#
發(fā)表于 2025-3-26 05:35:14 | 只看該作者
28#
發(fā)表于 2025-3-26 08:53:26 | 只看該作者
29#
發(fā)表于 2025-3-26 13:09:12 | 只看該作者
A Current View of Oxygen Supply Dependencyalled . (to 1) if every open subgroup . of . contains the images ..(..) for almost all ., i.e. all but a finite number. The free products of pro-.-groups are defined by the following universal property.
30#
發(fā)表于 2025-3-26 19:38:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
孟津县| 屯昌县| 连云港市| 西藏| 尤溪县| 灵川县| 嘉祥县| 三门县| 定州市| 城固县| 富蕴县| 鄢陵县| 邯郸市| 正定县| 汶川县| 五原县| 丰都县| 鲜城| 云浮市| 沙田区| 来凤县| 任丘市| 蓬溪县| 洛南县| 响水县| 清新县| 永宁县| 高雄县| 慈溪市| 闸北区| 江西省| 邵东县| 马尔康县| 云林县| 琼结县| 乌鲁木齐县| 邻水| 昆明市| 石阡县| 许昌市| 仙游县|