找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Algebras and Their Applications in Mathematical Physics; J. S. R. Chisholm,A. K. Common Book 1986 D. Reidel Publishing Company, D

[復(fù)制鏈接]
樓主: Arthur
41#
發(fā)表于 2025-3-28 15:20:24 | 只看該作者
Authority and the Profession of Medicine[3] Delanghe demonstrates that this method may be generalized to characterize homogeneous polynomial solutions to a generalized Cauchy-Riemann equation defined over a Clifford algebra. The function theory associated with this particular equation has been extensively pursued in recent years by a numb
42#
發(fā)表于 2025-3-28 22:35:37 | 只看該作者
An Historical View of Health Care Teamshe theory of biregular functions, which are regular functions of two variables of arbitrary dimension with values in a Clifford algebra. For these functions there exist integral representations with regular and non-regular kernels, just as in the complex case. We will give a representation formula o
43#
發(fā)表于 2025-3-29 00:48:21 | 只看該作者
44#
發(fā)表于 2025-3-29 06:58:36 | 只看該作者
Sarah R. Davies,Cecilie Glerup,Maja Horst the Einstein — Yang — Mills equations. The formalism highlights the difference between the K?hler and Dirac equations and their separability in a curved space-time is discussed. Some aspects of supersymmetric models are outlined.
45#
發(fā)表于 2025-3-29 07:53:54 | 只看該作者
Responsibility in Nanotechnology Developmentn conformai n-dimensional manifolds. An abstract scheme for such generalization is based on the splitting of the vector-valued de Rham sequence. The possible generalizations are classified by couples of irreducible CO(n)-modules and by a choice of a connection on the associated vector bundle..Variou
46#
發(fā)表于 2025-3-29 14:57:25 | 只看該作者
Responsibility in Nanotechnology Developmentormulae are of two types (elliptic and hyperbolic) and there is a general procedure (described by V.Sou?ek and M. Dodson for the Laplace equation in [3]) to transform one type into another, namely the Leray residue formula.In this way it is possible to derive from integral formulae in Clifford analy
47#
發(fā)表于 2025-3-29 16:46:30 | 只看該作者
Responsibility in Nanotechnology Developmenttors, and by its embedding class in a higher dimensional pseudoeuclidean space. The present paper shows how the notion of Killing and conformai Killing vectors find simple expression in the geometric calculus on vector manifolds, and considers a number of different isometric embeddings of exact solu
48#
發(fā)表于 2025-3-29 20:32:52 | 只看該作者
Clifford Algebras and Their Applications in Mathematical Physics978-94-009-4728-3Series ISSN 1389-2185
49#
發(fā)表于 2025-3-30 01:28:39 | 只看該作者
50#
發(fā)表于 2025-3-30 04:02:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-2 03:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中牟县| 惠水县| 克山县| 哈密市| 横峰县| 永安市| 阆中市| 灵山县| 若羌县| 连江县| 阳山县| 宁河县| 苗栗市| 如东县| 怀集县| 新竹县| 介休市| 泗水县| 颍上县| 资兴市| 深泽县| 平湖市| 孟州市| 吴忠市| 盐山县| 黑山县| 宜城市| 大关县| 巨鹿县| 黔西| 海门市| 顺昌县| 泉州市| 乌拉特后旗| 遵义县| 铁岭县| 大同市| 灵武市| 黄大仙区| 浑源县| 五峰|