找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Algebras and Their Applications in Mathematical Physics; J. S. R. Chisholm,A. K. Common Book 1986 D. Reidel Publishing Company, D

[復(fù)制鏈接]
樓主: Arthur
31#
發(fā)表于 2025-3-26 23:12:54 | 只看該作者
Left Regular Polynomials in Even Dimensions, and Tensor Products of Clifford Algebrasions over Clifford algebras, which is more closely aligned to the properties of Clifford algebras..In this paper another approach is adopted to characterize homogeneous polynomial solutions, in even dimensions, of the equations considered by Delanghe in [3]. It is demonstrated that these polynomials
32#
發(fā)表于 2025-3-27 01:50:53 | 只看該作者
33#
發(fā)表于 2025-3-27 05:24:11 | 只看該作者
34#
發(fā)表于 2025-3-27 13:24:38 | 只看該作者
Corporate Responsibility and Punishment,clidean spaces over reals have a natural linear structure over reals, complex numbers or quaternions. Clifford algebras have involutions which induce bilinear forms or scalar products on spinor spaces. The automorphism groups of these scalar products of spinors are determined and also classified.
35#
發(fā)表于 2025-3-27 14:33:52 | 只看該作者
36#
發(fā)表于 2025-3-27 20:36:00 | 只看該作者
37#
發(fā)表于 2025-3-27 23:56:16 | 只看該作者
38#
發(fā)表于 2025-3-28 04:30:38 | 只看該作者
39#
發(fā)表于 2025-3-28 08:33:58 | 只看該作者
40#
發(fā)表于 2025-3-28 11:37:14 | 只看該作者
https://doi.org/10.1007/978-94-009-7831-7Spin(m). This leads to the spherical monogenics as a refinement of the spherical harmonics. We also develop a scheme to construct solutions to partial differential equations with constant coefficients which are Spin(m)-invariant.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-2 03:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
四川省| 洞头县| 延边| 永修县| 涞源县| 晋城| 马龙县| 高雄市| 城固县| 轮台县| 宁阳县| 岱山县| 简阳市| 万年县| 堆龙德庆县| 监利县| 屏边| 茶陵县| 蒲城县| 郑州市| 彰化市| 平阳县| 青田县| 民权县| 咸宁市| 南江县| 太仆寺旗| 合水县| 浑源县| 铜陵市| 焦作市| 商洛市| 阿拉善左旗| 土默特右旗| 三原县| 龙游县| 唐山市| 灵石县| 罗源县| 鸡泽县| 纳雍县|