找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Algebras and Lie Theory; Eckhard Meinrenken Book 2013 Springer-Verlag Berlin Heidelberg 2013 Clifford algebras.Dirac operators.Li

[復(fù)制鏈接]
樓主: 臉紅
21#
發(fā)表于 2025-3-25 04:46:53 | 只看該作者
22#
發(fā)表于 2025-3-25 09:52:33 | 只看該作者
The Clifford algebra of a reductive Lie algebra,elements onto the linear subspace .. The chapter concludes with a conjecture of Kostant, expressing the resulting filtration of . in terms of the “principal TDS”. The conjecture was established in 2012 by Joseph, in conjunction with work of Alekseev–Moreau.
23#
發(fā)表于 2025-3-25 13:23:17 | 只看該作者
24#
發(fā)表于 2025-3-25 17:18:39 | 只看該作者
Clifford algebras,terior algebra ∧(.), and in the general case the Clifford algebra can be regarded as a deformation of the exterior algebra. In this chapter after constructing the Clifford algebra and describing its basic properties, we study in detail the quantization map .: ∧(.)→Cl(.) and justify the term “quantiz
25#
發(fā)表于 2025-3-25 23:50:32 | 只看該作者
26#
發(fā)表于 2025-3-26 01:33:34 | 只看該作者
27#
發(fā)表于 2025-3-26 05:24:39 | 只看該作者
28#
發(fā)表于 2025-3-26 09:09:37 | 只看該作者
Weil algebras,ng commutative .-differential algebras with connection. As an associative algebra, the Weil algebra is the tensor product of the symmetric algebra and the exterior algebra of?.. By considering non-commutative .-differential algebras with connection, we are led to introduce also a non-commutative Wei
29#
發(fā)表于 2025-3-26 15:56:54 | 只看該作者
Quantum Weil algebras,y the enveloping algebra . of a Lie algebra is a quantization of the symmetric algebra .. In this chapter we will consider a similar quantization of the Weil algebra ., for any Lie algebra . with a non-degenerate invariant inner product .. For a suitable choice of generators, the quantum Weil algebr
30#
發(fā)表于 2025-3-26 18:25:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
景洪市| 化德县| 宁远县| 清水河县| 青河县| 启东市| 上思县| 会宁县| 陵川县| 桃源县| 高碑店市| 巴楚县| 秭归县| 交口县| 清远市| 昌都县| 平舆县| 若羌县| 鸡西市| 荣成市| 泾川县| 通州市| 永康市| 岳阳市| 高陵县| 阜城县| 含山县| 曲阜市| 渝北区| 香港| 舞阳县| 西贡区| 始兴县| 铁力市| 交口县| 绍兴县| 盐池县| 阳泉市| 红安县| 磐安县| 瓮安县|