找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Algebras and Lie Theory; Eckhard Meinrenken Book 2013 Springer-Verlag Berlin Heidelberg 2013 Clifford algebras.Dirac operators.Li

[復(fù)制鏈接]
樓主: 臉紅
11#
發(fā)表于 2025-3-23 11:08:19 | 只看該作者
Symmetric bilinear forms, product of reflections, and Witt’s Theorem giving a partial normal form for quadratic forms. The theory of split symmetric bilinear forms is found to have many parallels to the theory of symplectic forms, and we will give a discussion of the Lagrangian Grassmannian in this spirit.
12#
發(fā)表于 2025-3-23 16:00:43 | 只看該作者
13#
發(fā)表于 2025-3-23 19:40:47 | 只看該作者
14#
發(fā)表于 2025-3-23 23:58:22 | 只看該作者
https://doi.org/10.1057/9780230505537ible Clifford module, the so-called spinor module. We give a discussion of pure spinors and their relation with Lagrangian subspaces, followed by a proof of Cartan’s triality principle. The classification of spinor modules for the case .=?. is used to derive interesting properties of the spin groups, with applications to compact Lie groups.
15#
發(fā)表于 2025-3-24 03:27:52 | 只看該作者
https://doi.org/10.1057/9780230505537s to present a proof of this result, due to E. Petracci, which is similar to the proof that the quantization map for Clifford algebras is an isomorphism. The proof builds on a discussion of the Hopf algebra structure on the enveloping algebra, and the fact that the quantization map .. preserves the comultiplication.
16#
發(fā)表于 2025-3-24 07:10:53 | 只看該作者
17#
發(fā)表于 2025-3-24 14:27:29 | 只看該作者
Palgrave Macmillan Asian Business Series interpretation in terms of the spin representation. Following Kostant’s work, we consider applications of the cubic Dirac operator . for equal rank pairs. This includes the Gross–Kostant–Ramond–Sternberg results on multiplets of representations for equal rank Lie subalgebras, as well as aspects of Dirac induction.
18#
發(fā)表于 2025-3-24 15:36:10 | 只看該作者
19#
發(fā)表于 2025-3-24 22:35:41 | 只看該作者
https://doi.org/10.1057/9780230505537 in?∧.(.). These questions will be studied using the spin representation for the vector space ..⊕., with bilinear form given by the pairing. One of the outcomes of this discussion is the construction of a remarkable ∧(.)-valued function on the orthogonal Lie algebra, which will play a role in our discussion of the Duflo theorem in Chapter?..
20#
發(fā)表于 2025-3-25 02:55:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武冈市| 宜丰县| 赤壁市| 巴青县| 水城县| 金山区| 海原县| 酒泉市| 龙南县| 阳原县| 巴楚县| 鲁山县| 正定县| 改则县| 淮南市| 景宁| 南平市| 延长县| 炎陵县| 江川县| 浦东新区| 阳山县| 嘉义县| 锦州市| 正阳县| 丹寨县| 尉犁县| 正定县| 格尔木市| 嵊州市| 奉化市| 利津县| 四会市| 新郑市| 尤溪县| 鹰潭市| 东宁县| 淳安县| 浦城县| 铅山县| 沅陵县|