找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big D; 16th China National Maosong Sun,Xiao

[復(fù)制鏈接]
樓主: supplementary
31#
發(fā)表于 2025-3-26 23:30:23 | 只看該作者
32#
發(fā)表于 2025-3-27 04:59:08 | 只看該作者
Improving Event Detection via Information Sharing Among Related Event Typesoblem, we propose a novel approach that allows for information sharing among related event types. Specifically, we employ a fully connected three-layer artificial neural network as our basic model and propose a type-group regularization term to achieve the goal of information sharing. We conduct exp
33#
發(fā)表于 2025-3-27 06:27:38 | 只看該作者
Joint Extraction of Multiple Relations and Entities by Using a Hybrid Neural Networkosed model uses a hybrid neural network to automatically learn sentence features and does not rely on any Natural Language Processing (NLP) tools, such as dependency parser. Our model is further capable of modeling multiple relations and their corresponding entity pairs simultaneously. Experiments o
34#
發(fā)表于 2025-3-27 11:50:00 | 只看該作者
A Fast and Effective Framework for Lifelong Topic Model with Self-learning Knowledgemodels. Moreover, some researchers propose lifelong topic models (LTM) to mine prior knowledge from topics generated from multi-domain corpus without human intervene. LTM incorporates the learned knowledge from multi-domain corpus into topic models by introducing the Generalized Polya Urn (GPU) mode
35#
發(fā)表于 2025-3-27 17:19:12 | 只看該作者
36#
發(fā)表于 2025-3-27 18:38:28 | 只看該作者
XLink: An Unsupervised Bilingual Entity Linking Systemable attention and several online entity linking systems have been published. In this paper, we build an online bilingual entity linking system XLink, which is based on . and .. XLink conducts two steps to link the mentions in the input document to entities in knowledge base, namely mention parsing
37#
發(fā)表于 2025-3-28 01:36:18 | 只看該作者
38#
發(fā)表于 2025-3-28 03:39:33 | 只看該作者
Willi J?ger,Rolf Rannacher,Jürgen Warnatzs can guarantee a higher precision rate, which heightens even more after dependency relations are added as linguistic rules for filtering, having achieved 85.11%. This method also achieved a higher precision rate rather than only resorting to syntactic dependency analysis as a collocation extraction method.
39#
發(fā)表于 2025-3-28 10:19:23 | 只看該作者
40#
發(fā)表于 2025-3-28 12:09:10 | 只看該作者
A. Hanf,H. -R. Volpp,J. Wolfrumasing on the finding, we propose a pseudo context skip-gram model, which makes use of context words of semantic nearest neighbors of target words. Experiment results show our model achieves significant performance improvements in both word similarity and analogy tasks.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 06:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
闸北区| 奎屯市| 孝义市| 波密县| 临夏县| 昂仁县| 通道| 台安县| 碌曲县| 陆丰市| 临泉县| 临高县| 嘉义县| 苏州市| 贵州省| 万载县| 龙南县| 阳城县| 孝义市| 萝北县| 兰州市| 盖州市| 临桂县| 于田县| 阜南县| 贵溪市| 大竹县| 台湾省| 洮南市| 双流县| 库车县| 太保市| 芮城县| 含山县| 青冈县| 桃江县| 琼海市| 自贡市| 荔浦县| 祁阳县| 綦江县|