找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big D; 16th China National Maosong Sun,Xiao

[復(fù)制鏈接]
樓主: supplementary
21#
發(fā)表于 2025-3-25 05:07:48 | 只看該作者
22#
發(fā)表于 2025-3-25 10:43:51 | 只看該作者
23#
發(fā)表于 2025-3-25 12:19:21 | 只看該作者
Employing Auto-annotated Data for Person Name Recognition in Judgment Documents In this paper, we focus on person name recognition in judgment documents. Owing to the lack of human-annotated data, we propose a joint learning approach, namely Aux-LSTM, to use a large scale of auto-annotated data to help human-annotated data (in a small size) for person name recognition. Specifi
24#
發(fā)表于 2025-3-25 19:15:50 | 只看該作者
Closed-Set Chinese Word Segmentation Based on Convolutional Neural Network Modell to each character, indicating its relative position within the word it belongs to. To do so, it first constructs shallow representations of characters by fusing unigram and bigram information in limited context window via an element-wise maximum operator, and then build up deep representations fro
25#
發(fā)表于 2025-3-25 21:35:32 | 只看該作者
26#
發(fā)表于 2025-3-26 02:05:13 | 只看該作者
27#
發(fā)表于 2025-3-26 07:30:03 | 只看該作者
28#
發(fā)表于 2025-3-26 10:14:41 | 只看該作者
29#
發(fā)表于 2025-3-26 14:22:21 | 只看該作者
Cost-Aware Learning Rate for Neural Machine Translationalgorithm for NMT sets a unified learning rate for each gold target word during training. However, words under different probability distributions should be handled differently. Thus, we propose a cost-aware learning rate method, which can produce different learning rates for words with different co
30#
發(fā)表于 2025-3-26 19:33:15 | 只看該作者
Integrating Word Sequences and Dependency Structures for Chemical-Disease Relation Extraction a .-max pooling convolutional neural network (CNN) to exploit word sequences and dependency structures for CDR extraction. Furthermore, an effective weighted context method is proposed to capture semantic information of word sequences. Our system extracts both intra- and inter-sentence level chemic
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 06:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定边县| 龙泉市| 改则县| 图们市| 永清县| 双牌县| 敦化市| 宁远县| 拉萨市| 青海省| 东乌珠穆沁旗| 沂源县| 西和县| 阜平县| 清河县| 桂平市| 西乌| 沙田区| 平遥县| 怀远县| 三门县| 南漳县| 岑溪市| 弥渡县| 勐海县| 丹棱县| 犍为县| 剑阁县| 桂阳县| 峡江县| 哈尔滨市| 郎溪县| 崇文区| 页游| 贡觉县| 岗巴县| 沙坪坝区| 浏阳市| 铜鼓县| 安福县| 承德市|