找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Chinese Computational Linguistics; 18th China National Maosong Sun,Xuanjing Huang,Yang Liu Conference proceedings 2019 Springer Nature Swi

[復(fù)制鏈接]
樓主: 壓縮
41#
發(fā)表于 2025-3-28 14:37:19 | 只看該作者
Adversarial Domain Adaptation for Chinese Semantic Dependency Graph Parsingponent we proposed, the model can effectively improve the performance in the target domain. On the CCSD dataset, our model achieved state-of-the-art performance with significant improvement compared to the strong baseline model.
42#
發(fā)表于 2025-3-28 22:02:37 | 只看該作者
43#
發(fā)表于 2025-3-29 01:43:09 | 只看該作者
Title-Aware Neural News Topic Predictionnews to learn unified news representations. In the title view, we learn title representations from words via a long-short term memory (LSTM) network, and use attention mechanism to select important words according to their contextual representations. In the body view, we propose to use a hierarchica
44#
發(fā)表于 2025-3-29 06:32:56 | 只看該作者
Lecture Notes in Computer Sciencet in BNC. They are . and . for the verb ., . for the verb ., and . for the verb .. (3) Some colligational patterns occur less frequently in CCE than those in BNC, such as the patterns . and . for the verb . and . for the verb ., and . for the verb .. (4) No new colligational patterns have been found
45#
發(fā)表于 2025-3-29 09:50:06 | 只看該作者
46#
發(fā)表于 2025-3-29 11:39:17 | 只看該作者
47#
發(fā)表于 2025-3-29 18:00:35 | 只看該作者
48#
發(fā)表于 2025-3-29 22:26:35 | 只看該作者
Olivier Bournez,Enrico Formenti,Igor PotapovWe evaluate our model on two tasks: Answer Selection and Textual Entailment. Experimental results show the effectiveness of our model, which achieves the state-of-the-art performance on WikiQA dataset.
49#
發(fā)表于 2025-3-30 00:28:45 | 只看該作者
Ilaria De Crescenzo,Salvatore La Torrenews to learn unified news representations. In the title view, we learn title representations from words via a long-short term memory (LSTM) network, and use attention mechanism to select important words according to their contextual representations. In the body view, we propose to use a hierarchica
50#
發(fā)表于 2025-3-30 06:42:01 | 只看該作者
https://doi.org/10.1007/978-3-030-32381-3artificial intelligence; classification; information extraction; language resources; machine translation
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 05:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
北票市| 定兴县| 青田县| 育儿| 岗巴县| 阿拉尔市| 枣庄市| 松阳县| 独山县| 开封市| 许昌市| 张家口市| 延川县| 枝江市| 包头市| 延安市| 长葛市| 八宿县| 乌拉特中旗| 长葛市| 丽江市| 石狮市| 锦屏县| 宜阳县| 丁青县| 鸡泽县| 盐边县| 祁连县| 常宁市| 中宁县| 巢湖市| 苍溪县| 浦县| 临沭县| 商丘市| 韩城市| 顺义区| 观塘区| 建瓯市| 孝昌县| 洪湖市|