找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Chinese Computational Linguistics; 18th China National Maosong Sun,Xuanjing Huang,Yang Liu Conference proceedings 2019 Springer Nature Swi

[復(fù)制鏈接]
樓主: 壓縮
31#
發(fā)表于 2025-3-26 23:28:37 | 只看該作者
32#
發(fā)表于 2025-3-27 02:42:10 | 只看該作者
33#
發(fā)表于 2025-3-27 05:25:38 | 只看該作者
34#
發(fā)表于 2025-3-27 12:24:36 | 只看該作者
Comparative Investigation of Deep Learning Components for End-to-end Implicit Discourse Relationshiptic work to investigate the influence of neural components on the performance of implicit discourse relation recognition. To address it, in this work we compare many different components and build two implicit discourse parsers base on the sequence and structure of sentence respectively. Experimenta
35#
發(fā)表于 2025-3-27 14:14:06 | 只看該作者
36#
發(fā)表于 2025-3-27 20:58:38 | 只看該作者
Sharing Pre-trained BERT Decoder for a Hybrid Summarizations two separated subtasks. In this paper, we propose a novel extractive-and-abstractive hybrid framework for single document summarization task by jointly learning to select sentence and rewrite summary. It first selects sentences by an extractive decoder and then generate summary according to each s
37#
發(fā)表于 2025-3-27 22:24:03 | 只看該作者
Title-Aware Neural News Topic Predictionet user interests and make personalized recommendations. However, massive news articles are generated everyday, and it too expensive and time-consuming to manually categorize all news. The news bodies usually convey the detailed information of news, and the news titles usually contain summarized and
38#
發(fā)表于 2025-3-28 03:10:33 | 只看該作者
Colligational Patterns in China English: The Case of the Verbs of Communicationt in BNC. They are . and . for the verb ., . for the verb ., and . for the verb .. (3) Some colligational patterns occur less frequently in CCE than those in BNC, such as the patterns . and . for the verb . and . for the verb ., and . for the verb .. (4) No new colligational patterns have been found
39#
發(fā)表于 2025-3-28 08:27:29 | 只看該作者
Enhancing Chinese Word Embeddings from Relevant Derivative Meanings of Main-Components in Charactershe attention mechanism. Our models can fine-grained enhance the precision of word embeddings without generating additional vectors. Experiments on word similarity and syntactic analogy tasks are conducted to validate the feasibility of our models. Furthermore, the results show that our models have a
40#
發(fā)表于 2025-3-28 10:32:37 | 只看該作者
Association Relationship Analyses of Stylistic Syntactic Structuresied before. Combined with the linguistic theory, detailed analyses show that the association between parts of speech and syntactic structures mined by machine learning method has an excellent stylistic explanatory effect.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 01:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海淀区| 沈丘县| 方城县| 文水县| 固始县| 梁山县| 黎川县| 仪征市| 双牌县| 武陟县| 湘潭县| 五台县| 宜兰县| 黎川县| 盐池县| 中江县| 泽库县| 高要市| 西乌珠穆沁旗| 常宁市| 江城| 乐安县| 隆子县| 石狮市| 汪清县| 邵武市| 六枝特区| 顺义区| 岳池县| 固镇县| 叙永县| 琼结县| 宜阳县| 尼勒克县| 望谟县| 沙田区| 商河县| 镇赉县| 惠州市| 辉南县| 湄潭县|