找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Characters and Blocks of Solvable Groups; A User’s Guide to La James Cossey,Yong Yang Book 2024 The Editor(s) (if applicable) and The Autho

[復(fù)制鏈接]
樓主: 租期
41#
發(fā)表于 2025-3-28 14:51:17 | 只看該作者
Base SizesIf . acts on a set ., a base for the action is defined to be a set of elements of . whose centralizers in . intersect trivially. The focus in this chapter is to prove a number of results, mostly by Seress and Espuelas, that give minimal base sizes for a number of different types of solvable group actions.
42#
發(fā)表于 2025-3-28 19:00:18 | 只看該作者
43#
發(fā)表于 2025-3-28 23:32:58 | 只看該作者
44#
發(fā)表于 2025-3-29 05:41:59 | 只看該作者
45#
發(fā)表于 2025-3-29 10:24:55 | 只看該作者
46#
發(fā)表于 2025-3-29 12:21:42 | 只看該作者
The Fixed Point Subspace of an Elemented-point subspaces than we proved in earlier chapters. We then use these improved bounds in the discussion of Dolfi’s powerful result, which shows if . is solvable and acts coprimely on . via automorphisms, then there are two elements of . whose centralizers in . intersect trivially. This proof draw
47#
發(fā)表于 2025-3-29 15:39:01 | 只看該作者
48#
發(fā)表于 2025-3-29 23:43:01 | 只看該作者
Huppert’s , Conjectureable group .. We begin with a subtle variation of Gluck’s permutation lemma, and then use another large orbit theorem to prove the best currently known bound for Huppert’s conjecture for solvable groups.
49#
發(fā)表于 2025-3-30 03:29:56 | 只看該作者
Other Applications of Large Orbit Theoremsscussing certain induction and restriction theorems that require a variation of Dolfi’s large orbit theorem from Chapter 8. We then discuss a result of Moreto and Wolf that determines that number of characters needed to “cover” the order of the solvable group .. In the last section we discuss, witho
50#
發(fā)表于 2025-3-30 04:24:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 13:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石嘴山市| 绥阳县| 海城市| 盐池县| 绥滨县| 娱乐| 清河县| 合作市| 水富县| 汕尾市| 丰台区| 临夏市| 娱乐| 白玉县| 六安市| 多伦县| 阿瓦提县| 水城县| 盐津县| 方山县| 鄂托克旗| 钦州市| 克山县| 陆丰市| 江油市| 临沂市| 酉阳| 东阳市| 石河子市| 仲巴县| 封丘县| 环江| 宜丰县| 昌平区| 镇江市| 两当县| 福贡县| 蓬莱市| 赤水市| 巩义市| 哈尔滨市|