找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Characters and Blocks of Solvable Groups; A User’s Guide to La James Cossey,Yong Yang Book 2024 The Editor(s) (if applicable) and The Autho

[復(fù)制鏈接]
樓主: 租期
21#
發(fā)表于 2025-3-25 06:31:27 | 只看該作者
22#
發(fā)表于 2025-3-25 09:56:40 | 只看該作者
23#
發(fā)表于 2025-3-25 15:37:34 | 只看該作者
https://doi.org/10.1007/978-3-031-50706-9Solvable Groups; Character Theory; Blocks of Finite Groups; Representations of Finite Groups; Large Orbi
24#
發(fā)表于 2025-3-25 16:26:52 | 只看該作者
978-3-031-50708-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
25#
發(fā)表于 2025-3-25 21:37:01 | 只看該作者
Regular Orbits in the Quasiprimitve Casesee our first of several important results bounding the size of certain fixed point subspaces, and we see how to use those bounds to generate regular orbits. We end with a discussion of the work of the second author that classifies the solvable primitive groups that do not have regular orbits.
26#
發(fā)表于 2025-3-26 02:31:06 | 只看該作者
27#
發(fā)表于 2025-3-26 05:53:56 | 只看該作者
28#
發(fā)表于 2025-3-26 09:00:30 | 只看該作者
29#
發(fā)表于 2025-3-26 14:22:47 | 只看該作者
F. Hoffmann,B. Weigel,S. CoenenIn this chapter we cover some of the fundamentals of module theory we will need. Many results are included without proof. However, we do include a detailed proof of a result of Gaschütz which will be used throughout.
30#
發(fā)表于 2025-3-26 20:23:19 | 只看該作者
https://doi.org/10.1007/978-3-642-10789-4Here we look at extraspecial groups, their representations, and their connection to symplectic actions. We discuss in some detail Hall’s important result that characterizes p-groups for which every abelian characteristic subgroup is cyclic. These results will allow us to begin our study of quasiprimitive groups in the next chapters.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 09:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
紫云| 屏南县| 平舆县| 南汇区| 易门县| 永兴县| 湖北省| 太康县| 潜山县| 环江| 古蔺县| 饶平县| 莒南县| 大邑县| 本溪市| 闸北区| 德安县| 太白县| 凌海市| 白水县| 南溪县| 吉林市| 南郑县| 顺昌县| 酒泉市| 莱西市| 屯门区| 枝江市| 河津市| 舞阳县| 格尔木市| 永兴县| 化州市| 观塘区| 密云县| 柏乡县| 邹平县| 石嘴山市| 贵德县| 吕梁市| 遂川县|