找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaotic Systems with Multistability and Hidden Attractors; Xiong Wang,Nikolay V. Kuznetsov,Guanrong Chen Book 2021 The Editor(s) (if appli

[復(fù)制鏈接]
樓主: 遮陽傘
31#
發(fā)表于 2025-3-26 22:39:34 | 只看該作者
32#
發(fā)表于 2025-3-27 03:02:17 | 只看該作者
https://doi.org/10.1007/b102240tal singularities of multi-dimensional dynamical systems. Although some examples of such systems have been shown by Poincare, Birkhoff, Morse, and some other researchers, the conceptual foundation of systems with a countable set of rough periodic motions was laid in the works of Smale, based on the
33#
發(fā)表于 2025-3-27 09:11:55 | 只看該作者
https://doi.org/10.1007/b102240ilibrium received considerable attention. Dissipative systems without equilibria can also be considered as systems with hidden attractors. Chaotic systems with hidden attractors do not satisfy the ?il’nikov criterion. Thus, they have neither homoclinic nor heteroclinic orbits [.]. From a computation
34#
發(fā)表于 2025-3-27 09:59:31 | 只看該作者
https://doi.org/10.1007/b102240ported in the literature, since there are some new mysterious features of such chaotic systems with important applications in engineering [.]. The presence of such systems provides some new insights in the relationships between the local properties of a line or curve of equilibria and the complex dy
35#
發(fā)表于 2025-3-27 17:25:19 | 只看該作者
36#
發(fā)表于 2025-3-27 18:42:11 | 只看該作者
Power System Stability Indices,f the qualitative properties of chaotic systems, including sensitive dependence on initial conditions [.], Lorenz [.], R?ssler [.] and Chua [., .] had identified some very simple examples with quadratic or piecewise linear nonlinearities.
37#
發(fā)表于 2025-3-28 00:40:47 | 只看該作者
38#
發(fā)表于 2025-3-28 03:26:13 | 只看該作者
Chaotic Jerk Systems with Hidden Attractorsf the qualitative properties of chaotic systems, including sensitive dependence on initial conditions [.], Lorenz [.], R?ssler [.] and Chua [., .] had identified some very simple examples with quadratic or piecewise linear nonlinearities.
39#
發(fā)表于 2025-3-28 09:58:09 | 只看該作者
40#
發(fā)表于 2025-3-28 11:41:31 | 只看該作者
?il’nikov Theoremtal singularities of multi-dimensional dynamical systems. Although some examples of such systems have been shown by Poincare, Birkhoff, Morse, and some other researchers, the conceptual foundation of systems with a countable set of rough periodic motions was laid in the works of Smale, based on the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖安县| 丰镇市| 额济纳旗| 吕梁市| 桐城市| 乐昌市| 双鸭山市| 西华县| 东乡族自治县| 永昌县| 繁峙县| 彝良县| 沁阳市| 洛川县| 原平市| 平江县| 杂多县| 光泽县| 文山县| 黄平县| 迁西县| 石门县| 青神县| 行唐县| 虹口区| 宁乡县| 屯昌县| 昌吉市| 虹口区| 南宫市| 山西省| 南丰县| 博爱县| 林甸县| 乐安县| 九台市| 昌乐县| 吴江市| 娄烦县| 手机| 同江市|