找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaotic Systems with Multistability and Hidden Attractors; Xiong Wang,Nikolay V. Kuznetsov,Guanrong Chen Book 2021 The Editor(s) (if appli

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 04:51:23 | 只看該作者
22#
發(fā)表于 2025-3-25 11:13:53 | 只看該作者
IntroductionEver since its discovery in 1963, the Lorenz system has been a paradigm of chaos and the Lorenz attractor has become an emblem of chaos. Lorenz himself thus has been marked by history as an icon of chaos theory.
23#
發(fā)表于 2025-3-25 14:43:54 | 只看該作者
Chaotic Systems with Stable EquilibriaAlthough the ?il’nikov theorem ensures horseshoe chaos to exist with a homoclinic orbit if its characteristic eigenvalues with negative real parts at the equilibria satisfy some specific conditions, it does not rule out the possibility of encountering chaos in systems with stable equilibria.
24#
發(fā)表于 2025-3-25 17:47:08 | 只看該作者
25#
發(fā)表于 2025-3-25 23:26:19 | 只看該作者
Hyperchaotic Systems with Hidden AttractorsRecently, research focus has been shifted from classifying periodic and chaotic attractors to self-excited and hidden attractors [.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.].
26#
發(fā)表于 2025-3-26 03:20:54 | 只看該作者
27#
發(fā)表于 2025-3-26 04:40:18 | 只看該作者
28#
發(fā)表于 2025-3-26 08:55:55 | 只看該作者
Multi-Stability in Self-Reproducing SystemsAs we discussed in the above chapters, many dynamical systems can produce similar attractors, specifically some of which [1–10] share the same Lyapunov exponents.
29#
發(fā)表于 2025-3-26 13:01:04 | 只看該作者
30#
發(fā)表于 2025-3-26 20:21:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尼勒克县| 梧州市| 车险| 卢氏县| 苏州市| 永登县| 兰坪| 安龙县| 安乡县| 北宁市| 锡林郭勒盟| 天等县| 穆棱市| 台江县| 巴彦淖尔市| 阿克苏市| 前郭尔| 陇川县| 陆川县| 灵璧县| 盐津县| 四会市| 莫力| 句容市| 扶风县| 泗阳县| 庄浪县| 丹江口市| 藁城市| 平和县| 牟定县| 南开区| 胶州市| 西藏| 衡东县| 漯河市| 鄢陵县| 孟州市| 仙桃市| 建水县| 拜城县|