找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaotic Dynamics in Nonlinear Theory; Lakshmi Burra Book 2014 Springer India 2014 Chaotic dynamics.Linked twist mappings.Nonlinear dynamic

[復(fù)制鏈接]
查看: 42161|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:28:56 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Chaotic Dynamics in Nonlinear Theory
編輯Lakshmi Burra
視頻videohttp://file.papertrans.cn/224/223923/223923.mp4
概述Presents a novel method to prove the existence of chaotic dynamics.Discusses the methods of phase-plane analysis, results from the theory of topological horseshoes and linked-twist maps.Proves the pre
圖書封面Titlebook: Chaotic Dynamics in Nonlinear Theory;  Lakshmi Burra Book 2014 Springer India 2014 Chaotic dynamics.Linked twist mappings.Nonlinear dynamic
描述.Using phase–plane analysis, findings from the theory of topological horseshoes and linked-twist maps, this book presents a novel method to prove the existence of chaotic dynamics. In?dynamical systems, complex behavior in a?map can be indicated by showing?the existence of a Smale-horseshoe-like structure, either for the map itself or its iterates. This usually requires some assumptions about the map, such as a diffeomorphism and some hyperbolicity conditions. In this text, less stringent definitions of a horseshoe have been suggested so as to reproduce some?geometrical features typical of the Smale horseshoe, while leaving out the hyperbolicity conditions associated with it. This leads to the study of the so-called topological horseshoes. The presence of chaos-like dynamics in a vertically driven planar pendulum, a pendulum of variable length, and in other more general related equations is also proved..
出版日期Book 2014
關(guān)鍵詞Chaotic dynamics; Linked twist mappings; Nonlinear dynamics; Nonlinear second-order ODEs; Periodic solut
版次1
doihttps://doi.org/10.1007/978-81-322-2092-3
isbn_softcover978-81-322-3543-9
isbn_ebook978-81-322-2092-3
copyrightSpringer India 2014
The information of publication is updating

書目名稱Chaotic Dynamics in Nonlinear Theory影響因子(影響力)




書目名稱Chaotic Dynamics in Nonlinear Theory影響因子(影響力)學(xué)科排名




書目名稱Chaotic Dynamics in Nonlinear Theory網(wǎng)絡(luò)公開度




書目名稱Chaotic Dynamics in Nonlinear Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Chaotic Dynamics in Nonlinear Theory被引頻次




書目名稱Chaotic Dynamics in Nonlinear Theory被引頻次學(xué)科排名




書目名稱Chaotic Dynamics in Nonlinear Theory年度引用




書目名稱Chaotic Dynamics in Nonlinear Theory年度引用學(xué)科排名




書目名稱Chaotic Dynamics in Nonlinear Theory讀者反饋




書目名稱Chaotic Dynamics in Nonlinear Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:08:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:22:38 | 只看該作者
13.7 Health, safety and ecology,respect to oriented cells. For these maps, we prove some theorems on the existence of fixed points, periodic points, and sequences of iterates, which are chaotic in a suitable manner. Our results, motivated by the study of the Poincaré map associated to some nonlinear equations, extend and improve some recent work.
地板
發(fā)表于 2025-3-22 05:34:24 | 只看該作者
5#
發(fā)表于 2025-3-22 10:58:42 | 只看該作者
topological horseshoes and linked-twist maps.Proves the pre.Using phase–plane analysis, findings from the theory of topological horseshoes and linked-twist maps, this book presents a novel method to prove the existence of chaotic dynamics. In?dynamical systems, complex behavior in a?map can be indi
6#
發(fā)表于 2025-3-22 13:42:10 | 只看該作者
13.4 Properties of hardmetals and cermets,iology, medicine, engineering, and economics. The fact that a perfectly deterministic system can behave in an apparently unpredictable way was of interest far beyond dynamical systems. In this chapter, some concepts relevant to chaotic dynamics are introduced.
7#
發(fā)表于 2025-3-22 18:55:13 | 只看該作者
8#
發(fā)表于 2025-3-22 21:38:35 | 只看該作者
9#
發(fā)表于 2025-3-23 04:15:42 | 只看該作者
10#
發(fā)表于 2025-3-23 07:54:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 00:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绥德县| 武清区| 乃东县| 云安县| 新野县| 武安市| 钦州市| 延边| 潢川县| 静安区| 托克逊县| 襄樊市| 武功县| 西城区| 漳浦县| 十堰市| 亚东县| 尉犁县| 平顺县| 松原市| 静安区| 容城县| 杭锦旗| 敦化市| 南乐县| 邵阳县| 连江县| 临沭县| 大冶市| 锦州市| 宁蒗| 克拉玛依市| 麻城市| 正阳县| 三门县| 治多县| 八宿县| 罗江县| 珠海市| 田阳县| 靖安县|