找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaotic Dynamics in Nonlinear Theory; Lakshmi Burra Book 2014 Springer India 2014 Chaotic dynamics.Linked twist mappings.Nonlinear dynamic

[復制鏈接]
樓主: 尖酸好
11#
發(fā)表于 2025-3-23 10:17:22 | 只看該作者
12#
發(fā)表于 2025-3-23 16:37:17 | 只看該作者
13#
發(fā)表于 2025-3-23 20:15:13 | 只看該作者
13.7 Health, safety and ecology,nked twist maps developed so far, along with phase-plane analysis, are used to show the presence of chaotic dynamics. We propose, in the general setting of topological spaces, a definition of two-dimensional oriented cell and consider maps which possess a property of stretching along the paths with
14#
發(fā)表于 2025-3-24 02:13:48 | 只看該作者
Refractory, Hard and Intermetallic Materialsiven planar pendulum in the general setting of topological spaces using the theory of topological horseshoes, linked twist maps and phase-plane analysis. This also deals with maps which possess a property of stretching along the paths with respect to oriented cells.
15#
發(fā)表于 2025-3-24 06:14:44 | 只看該作者
Lakshmi BurraPresents a novel method to prove the existence of chaotic dynamics.Discusses the methods of phase-plane analysis, results from the theory of topological horseshoes and linked-twist maps.Proves the pre
16#
發(fā)表于 2025-3-24 07:12:04 | 只看該作者
http://image.papertrans.cn/c/image/223923.jpg
17#
發(fā)表于 2025-3-24 11:11:03 | 只看該作者
https://doi.org/10.1007/978-81-322-2092-3Chaotic dynamics; Linked twist mappings; Nonlinear dynamics; Nonlinear second-order ODEs; Periodic solut
18#
發(fā)表于 2025-3-24 18:08:53 | 只看該作者
19#
發(fā)表于 2025-3-24 22:12:42 | 只看該作者
20#
發(fā)表于 2025-3-25 01:21:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 07:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
临清市| 象山县| 泰安市| 茶陵县| 苍梧县| 高碑店市| 江油市| 北川| 镇江市| 柘城县| 乌苏市| 哈巴河县| 石泉县| 迁安市| 吴江市| 洛扎县| 神木县| 峨边| 石阡县| 浮山县| 乃东县| 平顺县| 和平区| 抚顺县| 津市市| 甘南县| 若羌县| 措美县| 安多县| 额尔古纳市| 茶陵县| 宁河县| 盘锦市| 故城县| 洛阳市| 巫山县| 莫力| 伊金霍洛旗| 崇信县| 昭平县| 华亭县|