找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cellular Automata and Groups; Tullio Ceccherini-Silberstein,Michel Coornaert Textbook 2023Latest edition The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: Systole
11#
發(fā)表于 2025-3-23 13:22:53 | 只看該作者
Fundamentale Aspekte der Optionsbewertung,n is defined as being a map from the group into the alphabet. Thus, a configuration is a way of attaching an element of the alphabet to each element of the group. There is a natural action of the group on the set of configurations which is called the shift action (see Sect. 1.1).
12#
發(fā)表于 2025-3-23 14:01:37 | 只看該作者
13#
發(fā)表于 2025-3-23 18:58:44 | 只看該作者
https://doi.org/10.1007/978-3-031-43328-3Cellular Automaton; Grigorchuk Group; Paradoxical Decomposition; Symbolic Dynamics; Gromov-Weiss Theorem
14#
發(fā)表于 2025-3-23 23:05:23 | 只看該作者
978-3-031-43330-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
15#
發(fā)表于 2025-3-24 02:30:55 | 只看該作者
16#
發(fā)表于 2025-3-24 06:33:00 | 只看該作者
Optionsscheine als AnlagealternativeSurjunctive groups are defined in Sect. 3.1 as being the groups on which all injective cellular automata with finite alphabet are surjective. In Sect. 3.2 it is shown that every subgroup of a surjunctive group is a surjunctive group and that every locally surjunctive group is surjunctive.
17#
發(fā)表于 2025-3-24 12:46:18 | 只看該作者
https://doi.org/10.1007/978-3-322-86019-4This chapter is devoted to the class of amenable groups. This is a class of groups which plays an important role in many areas of mathematics such as ergodic theory, harmonic analysis, representation theory, dynamical systems, geometric group theory, probability theory and statistics.
18#
發(fā)表于 2025-3-24 14:51:59 | 只看該作者
19#
發(fā)表于 2025-3-24 19:16:05 | 只看該作者
20#
發(fā)表于 2025-3-25 00:09:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泗洪县| 黄龙县| 西充县| 广州市| 大庆市| 蕲春县| 郯城县| 沈丘县| 鄢陵县| 徐州市| 宾川县| 上饶县| 邮箱| 曲松县| 祁阳县| 大城县| 广州市| 澄江县| 齐齐哈尔市| 信丰县| 吉木乃县| 鸡泽县| 休宁县| 西和县| 海伦市| 苍山县| 开封县| 康定县| 潼关县| 石景山区| 石门县| 吉隆县| 深泽县| 龙江县| 武平县| 团风县| 来凤县| 广德县| 钟祥市| 同江市| 南陵县|