找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cellular Automata and Groups; Tullio Ceccherini-Silberstein,Michel Coornaert Textbook 2023Latest edition The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: Systole
21#
發(fā)表于 2025-3-25 07:06:18 | 只看該作者
22#
發(fā)表于 2025-3-25 10:12:15 | 只看該作者
Surjunctive Groups,Surjunctive groups are defined in Sect. 3.1 as being the groups on which all injective cellular automata with finite alphabet are surjective. In Sect. 3.2 it is shown that every subgroup of a surjunctive group is a surjunctive group and that every locally surjunctive group is surjunctive.
23#
發(fā)表于 2025-3-25 14:25:28 | 只看該作者
Amenable Groups,This chapter is devoted to the class of amenable groups. This is a class of groups which plays an important role in many areas of mathematics such as ergodic theory, harmonic analysis, representation theory, dynamical systems, geometric group theory, probability theory and statistics.
24#
發(fā)表于 2025-3-25 17:06:58 | 只看該作者
25#
發(fā)表于 2025-3-25 21:26:03 | 只看該作者
Finitely Generated Groups,This chapter is devoted to the growth and amenability of finitely generated groups. The choice of a finite symmetric generating subset for a finitely generated group defines a word metric on the group and a labelled graph, which is called a Cayley graph.
26#
發(fā)表于 2025-3-26 03:49:31 | 只看該作者
27#
發(fā)表于 2025-3-26 05:15:55 | 只看該作者
28#
發(fā)表于 2025-3-26 11:40:17 | 只看該作者
Cellular Automata,n is defined as being a map from the group into the alphabet. Thus, a configuration is a way of attaching an element of the alphabet to each element of the group. There is a natural action of the group on the set of configurations which is called the shift action (see Sect. 1.1).
29#
發(fā)表于 2025-3-26 15:09:41 | 只看該作者
Linear Cellular Automata,induced vector space structure on the set of configurations. If the alphabet vector space and the underlying group are fixed, the set of linear cellular automata is a subalgebra of the endomorphism algebra of the configuration space (Proposition 8.1.4).
30#
發(fā)表于 2025-3-26 16:53:11 | 只看該作者
7樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 22:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福海县| 清流县| 日喀则市| 阿拉善左旗| 临夏县| 巴林右旗| 宁城县| 鄯善县| 福清市| 永福县| 平远县| 扶余县| 荣昌县| 莆田市| 大新县| 锡林郭勒盟| 麟游县| 彭泽县| 洛阳市| 乌鲁木齐市| 武鸣县| 萨迦县| 喀喇沁旗| 青州市| 新蔡县| 水城县| 翼城县| 绥化市| 通河县| 宁河县| 北京市| 化隆| 红桥区| 班戈县| 玉龙| 塔城市| 天全县| 昭通市| 阿克陶县| 阿拉善右旗| 普格县|