找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cardinal Invariants on Boolean Algebras; Second Revised Editi J. Donald Monk Book 2014Latest edition Springer Basel 2014 Boolean algebra.ca

[復(fù)制鏈接]
樓主: 雜技演員
21#
發(fā)表于 2025-3-25 06:22:14 | 只看該作者
https://doi.org/10.1007/3-540-06721-3Again we note first of all that if . is a non-principal ultrafilter in a BA ., then ..
22#
發(fā)表于 2025-3-25 10:59:34 | 只看該作者
23#
發(fā)表于 2025-3-25 11:59:23 | 只看該作者
24#
發(fā)表于 2025-3-25 18:38:06 | 只看該作者
Gustav Georg Belz,Martin StauchRecall from just before Proposition 13.4 the definition of a right-separated sequencein a topological space. Let . be an ordinal.
25#
發(fā)表于 2025-3-25 23:53:39 | 只看該作者
26#
發(fā)表于 2025-3-26 02:03:29 | 只看該作者
Gustav Georg Belz,Martin Stauch(Note that when we say that . is a tree included in ., we mean merely that . is a subset of . which is a tree under the induced ordering; there is no assumption that incomparable elements (in . ) are disjoint (in the dual of .).) ..
27#
發(fā)表于 2025-3-26 07:51:10 | 只看該作者
Gustav Georg Belz,Martin Stauch., h-cof.. sup. : ....
28#
發(fā)表于 2025-3-26 11:40:28 | 只看該作者
Special Operations on Boolean Algebras,We give the basic definitions and facts about several operations on Boolean algebras which were not discussed in the Handbook.
29#
發(fā)表于 2025-3-26 14:34:50 | 只看該作者
Special Classes of Boolean Algebras,We discuss several special classes of Boolean algebras not mentioned in the Handbook.
30#
發(fā)表于 2025-3-26 18:17:08 | 只看該作者
Cellularity,A BA . is said to satisfy the κ-. (κ-cc) if every disjoint subset of . has power <κ. Thus for κ non-limit, this is the same as saying that the cellularity of . is <κ. Of most interest is the ω.-chain condition, called ccc for short (countable chain condition). We shall return to it below.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 05:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五台县| 四川省| 双峰县| 右玉县| 福贡县| 克山县| 高要市| 涡阳县| 石景山区| 延安市| 安顺市| 兴文县| 通江县| 汝南县| 济宁市| 类乌齐县| 沅陵县| 五河县| 宜兰市| 上蔡县| 札达县| 来安县| 屏山县| 淳化县| 琼中| 娄烦县| 绍兴市| 中阳县| 安义县| 潞西市| 乌拉特中旗| 辉南县| 虎林市| 文成县| 桐城市| 大荔县| 雷波县| 吉林市| 新巴尔虎右旗| 霞浦县| 杨浦区|