找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cardinal Invariants on Boolean Algebras; Second Revised Editi J. Donald Monk Book 2014Latest edition Springer Basel 2014 Boolean algebra.ca

[復(fù)制鏈接]
樓主: 雜技演員
11#
發(fā)表于 2025-3-23 12:51:09 | 只看該作者
12#
發(fā)表于 2025-3-23 16:14:28 | 只看該作者
https://doi.org/10.1007/3-540-06721-3A BA . is said to satisfy the κ-. (κ-cc) if every disjoint subset of . has power <κ. Thus for κ non-limit, this is the same as saying that the cellularity of . is <κ. Of most interest is the ω.-chain condition, called ccc for short (countable chain condition). We shall return to it below.
13#
發(fā)表于 2025-3-23 20:37:28 | 只看該作者
https://doi.org/10.1007/3-540-06721-3Recall that Depth(.) is the supremum of cardinalities of subsets of . which are well ordered by the Boolean ordering. There are two main references for results about this notion: McKenzie, Monk [82] and (implicitly) Gr?tzer, Lakser [69].
14#
發(fā)表于 2025-3-24 00:14:14 | 只看該作者
15#
發(fā)表于 2025-3-24 03:45:09 | 只看該作者
16#
發(fā)表于 2025-3-24 06:31:57 | 只看該作者
17#
發(fā)表于 2025-3-24 12:09:09 | 只看該作者
18#
發(fā)表于 2025-3-24 15:00:38 | 只看該作者
https://doi.org/10.1007/3-540-06721-3We denote .. The behaviour of this function under algebraic operations is for the most part obvious. Note, though, that questions about its behaviour under ultraproducts are the same as the well-known and difficult problems concerning the cardinality of ultraproducts in general.
19#
發(fā)表于 2025-3-24 20:29:29 | 只看該作者
20#
發(fā)表于 2025-3-24 23:19:23 | 只看該作者
https://doi.org/10.1007/3-540-06721-3First of all, note that if F is a non-principal ultrafilter on a BA ., then.. To see this, suppose that X is a finite set of non-zero elements of . which is dense in ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 23:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洞口县| 红原县| 河源市| 邮箱| 静海县| 永顺县| 盐津县| 河西区| 崇左市| 黑龙江省| 大同市| 临泽县| 长阳| 台江县| 台前县| 深州市| 辰溪县| 太仆寺旗| 泽普县| 合肥市| 镇坪县| 阜南县| 正定县| 福建省| 南阳市| 贵南县| 蛟河市| 汨罗市| 南川市| 卢龙县| 象山县| 临安市| 安溪县| 上栗县| 庆云县| 保山市| 博乐市| 枣强县| 海淀区| 徐水县| 同德县|