找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Canonical Metrics in K?hler Geometry; Gang Tian Book 2000 Birkh?user Verlag 2000 Differential geometry.K?hler geometry.curvature.geometry.

[復(fù)制鏈接]
查看: 13002|回復(fù): 40
樓主
發(fā)表于 2025-3-21 19:50:28 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Canonical Metrics in K?hler Geometry
編輯Gang Tian
視頻videohttp://file.papertrans.cn/222/221340/221340.mp4
叢書名稱Lectures in Mathematics. ETH Zürich
圖書封面Titlebook: Canonical Metrics in K?hler Geometry;  Gang Tian Book 2000 Birkh?user Verlag 2000 Differential geometry.K?hler geometry.curvature.geometry.
出版日期Book 2000
關(guān)鍵詞Differential geometry; K?hler geometry; curvature; geometry; manifold; partial differential equation; part
版次1
doihttps://doi.org/10.1007/978-3-0348-8389-4
isbn_softcover978-3-7643-6194-5
isbn_ebook978-3-0348-8389-4
copyrightBirkh?user Verlag 2000
The information of publication is updating

書目名稱Canonical Metrics in K?hler Geometry影響因子(影響力)




書目名稱Canonical Metrics in K?hler Geometry影響因子(影響力)學(xué)科排名




書目名稱Canonical Metrics in K?hler Geometry網(wǎng)絡(luò)公開度




書目名稱Canonical Metrics in K?hler Geometry網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Canonical Metrics in K?hler Geometry被引頻次




書目名稱Canonical Metrics in K?hler Geometry被引頻次學(xué)科排名




書目名稱Canonical Metrics in K?hler Geometry年度引用




書目名稱Canonical Metrics in K?hler Geometry年度引用學(xué)科排名




書目名稱Canonical Metrics in K?hler Geometry讀者反饋




書目名稱Canonical Metrics in K?hler Geometry讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:03:42 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:04:04 | 只看該作者
地板
發(fā)表于 2025-3-22 05:19:47 | 只看該作者
Djordje Dihovicni,Milan Mi??evi?. ∈ .. In local coordinates x.,…, ., one has a natural local basis . for ., then . is represented by a smooth matrix-valued function {g.}, for ., then . is represented by a smooth matrix-valued function {.}, where ..
5#
發(fā)表于 2025-3-22 11:31:37 | 只看該作者
https://doi.org/10.1007/b102009 consists of all left-invariant vector fields on .. Then any . ∈ . induces a one-parameter subgroup {?.} of .. Since . acts on ., ? . induces a vector field . on .. It is well known that there exists a map ., called moment map, . : .→ .*, satisfying
6#
發(fā)表于 2025-3-22 16:03:19 | 只看該作者
Areas Related to Enzyme Catalysis, class [ω] ∈ . (., ?) ∩ . (., ?) on a compact K?hler manifold . and any form Ω representing the first Chern class, can we find a metric ω ∈ [ω] such that Ric(ω) = Ω? This is known as the Calabi conjecture and it was solved by Yau in 1976. We will state it here as a theorem and refer to it as the Cal
7#
發(fā)表于 2025-3-22 18:18:03 | 只看該作者
Overview: 978-3-7643-6194-5978-3-0348-8389-4
8#
發(fā)表于 2025-3-22 22:55:16 | 只看該作者
Djordje Dihovicni,Milan Mi??evi?. ∈ .. In local coordinates x.,…, ., one has a natural local basis . for ., then . is represented by a smooth matrix-valued function {g.}, for ., then . is represented by a smooth matrix-valued function {.}, where ..
9#
發(fā)表于 2025-3-23 02:13:59 | 只看該作者
10#
發(fā)表于 2025-3-23 06:02:02 | 只看該作者
Areas Related to Enzyme Catalysis, class [ω] ∈ . (., ?) ∩ . (., ?) on a compact K?hler manifold . and any form Ω representing the first Chern class, can we find a metric ω ∈ [ω] such that Ric(ω) = Ω? This is known as the Calabi conjecture and it was solved by Yau in 1976. We will state it here as a theorem and refer to it as the Calabi-Yau Theorem.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 03:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临江市| 郧西县| 云林县| 内丘县| 安平县| 宁明县| 莎车县| 房产| 平乐县| 成武县| 桦南县| 嘉鱼县| 东丰县| 尼木县| 平江县| 吕梁市| 菏泽市| 蒲江县| 额尔古纳市| 陇川县| 突泉县| 上饶县| 普兰县| 三门县| 聊城市| 玉环县| 新乡县| 嘉荫县| 广汉市| 北安市| 当涂县| 拉孜县| 洛宁县| 米脂县| 城固县| 虞城县| 新田县| 南丰县| 黄浦区| 西城区| 墨脱县|