找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Canonical Metrics in K?hler Geometry; Gang Tian Book 2000 Birkh?user Verlag 2000 Differential geometry.K?hler geometry.curvature.geometry.

[復(fù)制鏈接]
查看: 13011|回復(fù): 40
樓主
發(fā)表于 2025-3-21 19:50:28 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Canonical Metrics in K?hler Geometry
編輯Gang Tian
視頻videohttp://file.papertrans.cn/222/221340/221340.mp4
叢書名稱Lectures in Mathematics. ETH Zürich
圖書封面Titlebook: Canonical Metrics in K?hler Geometry;  Gang Tian Book 2000 Birkh?user Verlag 2000 Differential geometry.K?hler geometry.curvature.geometry.
出版日期Book 2000
關(guān)鍵詞Differential geometry; K?hler geometry; curvature; geometry; manifold; partial differential equation; part
版次1
doihttps://doi.org/10.1007/978-3-0348-8389-4
isbn_softcover978-3-7643-6194-5
isbn_ebook978-3-0348-8389-4
copyrightBirkh?user Verlag 2000
The information of publication is updating

書目名稱Canonical Metrics in K?hler Geometry影響因子(影響力)




書目名稱Canonical Metrics in K?hler Geometry影響因子(影響力)學(xué)科排名




書目名稱Canonical Metrics in K?hler Geometry網(wǎng)絡(luò)公開度




書目名稱Canonical Metrics in K?hler Geometry網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Canonical Metrics in K?hler Geometry被引頻次




書目名稱Canonical Metrics in K?hler Geometry被引頻次學(xué)科排名




書目名稱Canonical Metrics in K?hler Geometry年度引用




書目名稱Canonical Metrics in K?hler Geometry年度引用學(xué)科排名




書目名稱Canonical Metrics in K?hler Geometry讀者反饋




書目名稱Canonical Metrics in K?hler Geometry讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:03:42 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:04:04 | 只看該作者
地板
發(fā)表于 2025-3-22 05:19:47 | 只看該作者
Djordje Dihovicni,Milan Mi??evi?. ∈ .. In local coordinates x.,…, ., one has a natural local basis . for ., then . is represented by a smooth matrix-valued function {g.}, for ., then . is represented by a smooth matrix-valued function {.}, where ..
5#
發(fā)表于 2025-3-22 11:31:37 | 只看該作者
https://doi.org/10.1007/b102009 consists of all left-invariant vector fields on .. Then any . ∈ . induces a one-parameter subgroup {?.} of .. Since . acts on ., ? . induces a vector field . on .. It is well known that there exists a map ., called moment map, . : .→ .*, satisfying
6#
發(fā)表于 2025-3-22 16:03:19 | 只看該作者
Areas Related to Enzyme Catalysis, class [ω] ∈ . (., ?) ∩ . (., ?) on a compact K?hler manifold . and any form Ω representing the first Chern class, can we find a metric ω ∈ [ω] such that Ric(ω) = Ω? This is known as the Calabi conjecture and it was solved by Yau in 1976. We will state it here as a theorem and refer to it as the Cal
7#
發(fā)表于 2025-3-22 18:18:03 | 只看該作者
Overview: 978-3-7643-6194-5978-3-0348-8389-4
8#
發(fā)表于 2025-3-22 22:55:16 | 只看該作者
Djordje Dihovicni,Milan Mi??evi?. ∈ .. In local coordinates x.,…, ., one has a natural local basis . for ., then . is represented by a smooth matrix-valued function {g.}, for ., then . is represented by a smooth matrix-valued function {.}, where ..
9#
發(fā)表于 2025-3-23 02:13:59 | 只看該作者
10#
發(fā)表于 2025-3-23 06:02:02 | 只看該作者
Areas Related to Enzyme Catalysis, class [ω] ∈ . (., ?) ∩ . (., ?) on a compact K?hler manifold . and any form Ω representing the first Chern class, can we find a metric ω ∈ [ω] such that Ric(ω) = Ω? This is known as the Calabi conjecture and it was solved by Yau in 1976. We will state it here as a theorem and refer to it as the Calabi-Yau Theorem.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 13:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双牌县| 临沂市| 建水县| 红安县| 兴城市| 门头沟区| 格尔木市| 清河县| 来凤县| 任丘市| 南宁市| 西青区| 双牌县| 永福县| 宁武县| 衡东县| 广平县| 宁陵县| 体育| 凌海市| 雅江县| 柳河县| 岐山县| 石景山区| 上蔡县| 信阳市| 寿宁县| 玛沁县| 海原县| 北宁市| 清苑县| 灵丘县| 邯郸县| 龙江县| 信宜市| 剑阁县| 波密县| 高雄县| 北川| 伊宁县| 湘西|