找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Calculus of Variations; Filip Rindler Textbook 2018 Springer International Publishing AG, part of Springer Nature 2018 calculus of variati

[復制鏈接]
樓主: 休耕地
41#
發(fā)表于 2025-3-28 15:21:53 | 只看該作者
42#
發(fā)表于 2025-3-28 20:23:13 | 只看該作者
43#
發(fā)表于 2025-3-29 01:49:09 | 只看該作者
44#
發(fā)表于 2025-3-29 05:05:10 | 只看該作者
45#
發(fā)表于 2025-3-29 11:07:15 | 只看該作者
Quasiconvexitysponding integral functional. Moreover, we proved in Proposition?2.9 that if . or ., then convexity of the integrand is also necessary for weak lower semicontinuity. In the vectorial case (.), however, it turns out that one can find weakly lower semicontinuous integral functionals whose integrands a
46#
發(fā)表于 2025-3-29 12:46:36 | 只看該作者
Polyconvexity Thus, we were led to consider quasiconvex integrands. However, while quasiconvexity is of tremendous importance in the theory of the calculus of variations, our Lower Semicontinuity Theorem?. has one major drawback: we needed to require the .-growth bound
47#
發(fā)表于 2025-3-29 18:34:00 | 只看該作者
48#
發(fā)表于 2025-3-29 22:46:42 | 只看該作者
Generalized Young Measurester, however, here we proceed in a more abstract way: We first introduce the theory of ., which extends the standard theory of Young measures developed in Chapter?.. Besides quantifying oscillations (like classical Young measures), this theory crucially allows one to quantify . as well, thus providi
49#
發(fā)表于 2025-3-30 03:47:35 | 只看該作者
50#
發(fā)表于 2025-3-30 07:26:37 | 只看該作者
Book 2009ent insight into state-of-the-art developments in this broad and growing ?eld of research. The editors warmly thank all the scientists, who have contributed by their outstanding papers to the quality of this edition. Special thanks go to Jaan Simon for his great help in putting together the manuscri
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 12:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
云梦县| 红原县| 岐山县| 诸城市| 泽库县| 商都县| 长乐市| 汶川县| 且末县| 都兰县| 类乌齐县| 南宁市| 丹东市| 无极县| 加查县| 宁波市| 台北市| 通海县| 遂昌县| 长阳| 宜城市| 宜川县| 和林格尔县| 都兰县| 正蓝旗| 涟水县| 永顺县| 华阴市| 龙陵县| 商南县| 礼泉县| 革吉县| 渭南市| 澄江县| 奉节县| 银川市| 龙陵县| 修武县| 贵阳市| 绥阳县| 宜宾市|