找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Calculus of Variations; Filip Rindler Textbook 2018 Springer International Publishing AG, part of Springer Nature 2018 calculus of variati

[復(fù)制鏈接]
樓主: 休耕地
11#
發(fā)表于 2025-3-23 13:21:11 | 只看該作者
IntroductionIn the quest to formulate useful mathematical models of aspects of the world, it turns out on surprisingly many occasions that the model becomes clearer, more compact, or more tractable if one introduces some form of .. This means that one can find a quantity, such as energy or entropy, which obeys a minimization, maximization or saddle-point law.
12#
發(fā)表于 2025-3-23 16:46:02 | 只看該作者
ConvexityIn this chapter we start to develop the mathematical theory that will allow us to analyze the problems presented in the introduction, and many more. The basic minimization problem that we are considering is the following:
13#
發(fā)表于 2025-3-23 22:01:15 | 只看該作者
14#
發(fā)表于 2025-3-23 23:22:14 | 只看該作者
15#
發(fā)表于 2025-3-24 04:05:26 | 只看該作者
SingularitiesAll of the existence theorems for minimizers of integral functionals defined on Sobolev spaces . that we have seen so far required that .. Extending the existence theory to the . case . turns out to be quite intricate and necessitates the development of new tools.
16#
發(fā)表于 2025-3-24 08:30:58 | 只看該作者
Linear-Growth FunctionalsAfter the preparations in the previous chapter, we now return to the task at hand, namely to analyze the following minimization problem for an integral functional with .: ..
17#
發(fā)表于 2025-3-24 10:40:17 | 只看該作者
18#
發(fā)表于 2025-3-24 16:22:24 | 只看該作者
19#
發(fā)表于 2025-3-24 20:07:33 | 只看該作者
20#
發(fā)表于 2025-3-24 23:34:07 | 只看該作者
https://doi.org/10.1007/978-1-4842-3673-4 Thus, we were led to consider quasiconvex integrands. However, while quasiconvexity is of tremendous importance in the theory of the calculus of variations, our Lower Semicontinuity Theorem?. has one major drawback: we needed to require the .-growth bound
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玛沁县| 林芝县| 故城县| 玉屏| 隆化县| 肥东县| 怀集县| 云龙县| 海南省| 阜南县| 宝清县| 梅河口市| 浑源县| 曲麻莱县| 合阳县| 定南县| 新余市| 吉木乃县| 渭南市| 东乡族自治县| 黄陵县| 扎鲁特旗| 库车县| 延川县| 漾濞| 津市市| 安新县| 长宁县| 子洲县| 通江县| 枣强县| 台北市| 镇平县| 随州市| 遵义市| 台中县| 定边县| 湖南省| 乐昌市| 青阳县| 南昌县|