找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: CR Submanifolds of Complex Projective Space; Mirjana Djoric,Masafumi Okumura Book 2010 Springer-Verlag New York 2010 CR Submanifolds.Comp

[復(fù)制鏈接]
樓主: 涌出
21#
發(fā)表于 2025-3-25 05:56:59 | 只看該作者
New Perspectives in German Political Studieses of the complex projective space are inherited from those of the sphere. Especially, at the end of this section, we prove that the complex projective space has constant holomorphic sectional curvature.
22#
發(fā)表于 2025-3-25 07:52:51 | 只看該作者
23#
發(fā)表于 2025-3-25 14:04:19 | 只看該作者
Perspectives on Geographical Marginalitych satisfy a certain condition. The condition that the shape operator is parallel is its special case. In this section we give the proof of this classification (in the specific case .) and furthermore, we show that the algebraic condition (13.5) on the shape operator implies that it is parallel.
24#
發(fā)表于 2025-3-25 18:23:20 | 只看該作者
https://doi.org/10.1007/978-3-319-59002-8her words, for the curve . without torsion, there exists a 2-dimensional totally geodesic subspace .. such that .. In general, a curve . is a submanifold of codimension 2 of .., but if its torsion is zero, it can be regarded as a submanifold of codimension 1 in .., that is, the codimension is reduce
25#
發(fā)表于 2025-3-25 20:15:32 | 只看該作者
26#
發(fā)表于 2025-3-26 00:08:16 | 只看該作者
Armand Faganel,Anita Trnav?evi?. is the distinguished normal vector field, used to define the almost contact structure . on ., induced from the almost complex structure . of .. Moreover, since a real hypersurface . of a K?hler manifold . has two geometric structures: an almost contact structure . and a submanifold structure repre
27#
發(fā)表于 2025-3-26 07:04:13 | 只看該作者
The principal circle bundle S2n+1(Pn(C), S1),es of the complex projective space are inherited from those of the sphere. Especially, at the end of this section, we prove that the complex projective space has constant holomorphic sectional curvature.
28#
發(fā)表于 2025-3-26 10:45:09 | 只看該作者
Hypersurfaces of a Riemannian manifold of constant curvature,consider hypersurfaces of a Riemannian manifold of constant curvature. This research, combined with the results obtained in Section 10, will contribute to studying real hypersurfaces of complex projective space in Section 16.
29#
發(fā)表于 2025-3-26 14:32:54 | 只看該作者
30#
發(fā)表于 2025-3-26 18:01:59 | 只看該作者
Codimension reduction of a submanifold,her words, for the curve . without torsion, there exists a 2-dimensional totally geodesic subspace .. such that .. In general, a curve . is a submanifold of codimension 2 of .., but if its torsion is zero, it can be regarded as a submanifold of codimension 1 in .., that is, the codimension is reduced from 2 to 1.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
寻乌县| 巩留县| 岑溪市| 崇信县| 团风县| 横峰县| 视频| 翁牛特旗| 上林县| 淮北市| 宾川县| 赤峰市| 彭阳县| 皋兰县| 永康市| 社会| 康定县| 庆云县| 辉南县| 鸡东县| SHOW| 湾仔区| 遵义市| 兴化市| 阿坝| 理塘县| 庆阳市| 普宁市| 阿勒泰市| 彝良县| 孝义市| 丁青县| 高州市| 布尔津县| 合阳县| 武义县| 胶南市| 科尔| 常熟市| 营山县| 呼图壁县|