找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: CR Submanifolds of Complex Projective Space; Mirjana Djoric,Masafumi Okumura Book 2010 Springer-Verlag New York 2010 CR Submanifolds.Comp

[復制鏈接]
樓主: 涌出
11#
發(fā)表于 2025-3-23 12:46:53 | 只看該作者
12#
發(fā)表于 2025-3-23 17:09:59 | 只看該作者
Hypersurfaces of a sphere with parallel shape operator,ch satisfy a certain condition. The condition that the shape operator is parallel is its special case. In this section we give the proof of this classification (in the specific case .) and furthermore, we show that the algebraic condition (13.5) on the shape operator implies that it is parallel.
13#
發(fā)表于 2025-3-23 20:21:29 | 只看該作者
14#
發(fā)表于 2025-3-23 23:42:36 | 只看該作者
CR submanifolds of maximal CR dimension,position 7.8 let us suppose that the ambient space is a complex manifold . equipped with a Hermitian metric .. If . is an .-dimensional CR submanifold of maximal CR dimension of ., then at each point . of ., the real dimension of . is ..
15#
發(fā)表于 2025-3-24 05:51:57 | 只看該作者
Real hypersurfaces of a complex projective space,. is the distinguished normal vector field, used to define the almost contact structure . on ., induced from the almost complex structure . of .. Moreover, since a real hypersurface . of a K?hler manifold . has two geometric structures: an almost contact structure . and a submanifold structure repre
16#
發(fā)表于 2025-3-24 07:46:05 | 只看該作者
17#
發(fā)表于 2025-3-24 11:32:15 | 只看該作者
978-1-4614-2477-2Springer-Verlag New York 2010
18#
發(fā)表于 2025-3-24 15:53:15 | 只看該作者
Mirjana Djoric,Masafumi OkumuraPresents many recent developments and results in the study of CR submanifolds not previously published.Provides a self-contained introduction to complex differential geometry.Provides relevant techniq
19#
發(fā)表于 2025-3-24 22:00:41 | 只看該作者
20#
發(fā)表于 2025-3-25 00:44:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 04:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
潜江市| 商水县| 谷城县| 棋牌| 晋中市| 中西区| 吉木萨尔县| 唐山市| 岳阳县| 万州区| 高台县| 巫溪县| 东阳市| 永和县| 思南县| 松原市| 大渡口区| 石泉县| 盘锦市| 特克斯县| 泰和县| 象州县| 屏东县| 孟津县| 九龙坡区| 东方市| 梁河县| 丰原市| 怀化市| 鸡西市| 汶上县| 增城市| 南京市| 正阳县| 湛江市| 牡丹江市| 上思县| 夹江县| 遂川县| 长治市| 常熟市|