找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: CR Submanifolds of Complex Projective Space; Mirjana Djoric,Masafumi Okumura Book 2010 Springer-Verlag New York 2010 CR Submanifolds.Comp

[復(fù)制鏈接]
樓主: 涌出
11#
發(fā)表于 2025-3-23 12:46:53 | 只看該作者
12#
發(fā)表于 2025-3-23 17:09:59 | 只看該作者
Hypersurfaces of a sphere with parallel shape operator,ch satisfy a certain condition. The condition that the shape operator is parallel is its special case. In this section we give the proof of this classification (in the specific case .) and furthermore, we show that the algebraic condition (13.5) on the shape operator implies that it is parallel.
13#
發(fā)表于 2025-3-23 20:21:29 | 只看該作者
14#
發(fā)表于 2025-3-23 23:42:36 | 只看該作者
CR submanifolds of maximal CR dimension,position 7.8 let us suppose that the ambient space is a complex manifold . equipped with a Hermitian metric .. If . is an .-dimensional CR submanifold of maximal CR dimension of ., then at each point . of ., the real dimension of . is ..
15#
發(fā)表于 2025-3-24 05:51:57 | 只看該作者
Real hypersurfaces of a complex projective space,. is the distinguished normal vector field, used to define the almost contact structure . on ., induced from the almost complex structure . of .. Moreover, since a real hypersurface . of a K?hler manifold . has two geometric structures: an almost contact structure . and a submanifold structure repre
16#
發(fā)表于 2025-3-24 07:46:05 | 只看該作者
17#
發(fā)表于 2025-3-24 11:32:15 | 只看該作者
978-1-4614-2477-2Springer-Verlag New York 2010
18#
發(fā)表于 2025-3-24 15:53:15 | 只看該作者
Mirjana Djoric,Masafumi OkumuraPresents many recent developments and results in the study of CR submanifolds not previously published.Provides a self-contained introduction to complex differential geometry.Provides relevant techniq
19#
發(fā)表于 2025-3-24 22:00:41 | 只看該作者
20#
發(fā)表于 2025-3-25 00:44:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 02:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
电白县| 浦江县| 安庆市| 北安市| 拉孜县| 临颍县| 丹阳市| 辉南县| 璧山县| 磴口县| 齐齐哈尔市| 顺义区| 交城县| 大余县| 潼关县| 革吉县| 江永县| 汾阳市| 三原县| 绥棱县| 上饶县| 夹江县| 扎兰屯市| 德保县| 永吉县| 成都市| 玛沁县| 基隆市| 秦皇岛市| 常宁市| 高淳县| 青浦区| 上蔡县| 乃东县| 沈阳市| 玉山县| 宁河县| 武威市| 岳西县| 乌兰浩特市| 镇宁|