找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Breaking Barriers with Generative Intelligence. Using GI to Improve Human Education and Well-Being; First International Azza Basiouni,Clau

[復制鏈接]
樓主: hierarchy
11#
發(fā)表于 2025-3-23 12:38:28 | 只看該作者
12#
發(fā)表于 2025-3-23 14:19:39 | 只看該作者
13#
發(fā)表于 2025-3-23 20:48:57 | 只看該作者
Mikrobasierte Verfahren der Datenanalyse,tions where machine learning models predict mental health crises from patterns in user data. Additionally, AI‘s integration into physical health apps that track and analyse user activity and physiological data highlights its role in promoting healthier lifestyle choices and preventive healthcare pra
14#
發(fā)表于 2025-3-23 23:39:59 | 只看該作者
15#
發(fā)表于 2025-3-24 03:37:02 | 只看該作者
https://doi.org/10.1007/978-3-322-85952-5 out the factors that define the use and adoption of generative AI and its effects on other social sustainability factors like education, diversity, and readiness. The study therefore assists in filling gaps within the literature on AI in education and is beneficial for students, policymakers, educa
16#
發(fā)表于 2025-3-24 10:06:39 | 只看該作者
https://doi.org/10.1007/978-3-322-85952-5adaptability to online education. The model‘s performance was evaluated using accuracy, precision, recall, and F1-score metrics. The Random Forest model achieved an accuracy of 88.3%. It showed high precision and recall for the ‘High’ and ‘Moderate’ adaptability classes but lower performance in pred
17#
發(fā)表于 2025-3-24 11:25:02 | 只看該作者
18#
發(fā)表于 2025-3-24 17:50:04 | 只看該作者
https://doi.org/10.1007/978-3-322-85952-5ayers with ReLU activation functions and dropout layers to prevent overfitting. The model is trained over 200 epochs with a batch size of 5, utilizing the Adam optimizer and categorical cross-entropy loss function. The results demonstrate the chatbot’s high accuracy and effectiveness, achieving an a
19#
發(fā)表于 2025-3-24 22:27:52 | 只看該作者
20#
發(fā)表于 2025-3-25 00:52:46 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 13:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
额敏县| 贡嘎县| 贵南县| 阿拉尔市| 达州市| 玉门市| 达日县| 余江县| 江口县| 江油市| 新乐市| 九江县| 博湖县| 阿图什市| 杨浦区| 新昌县| 霸州市| 景宁| 得荣县| 镇远县| 东阿县| 武冈市| 兰考县| 溧阳市| 明溪县| 资阳市| 封丘县| 西盟| 灌阳县| 博爱县| 辛集市| 沐川县| 庄河市| 南木林县| 普定县| 漾濞| 敖汉旗| 广东省| 长岛县| 广西| 大连市|