找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bézier and B-Spline Techniques; Hartmut Prautzsch,Wolfgang Boehm,Marco Paluszny Textbook 2002 Springer-Verlag Berlin Heidelberg 2002 B-spl

[復(fù)制鏈接]
樓主: credit
41#
發(fā)表于 2025-3-28 15:40:58 | 只看該作者
42#
發(fā)表于 2025-3-28 21:12:37 | 只看該作者
Jason R. Finley,Farah Naaz,Francine W. Gohenerally, a curve is said to be .. if it has an r times continuously differentiate parametrization. An even more general smoothness concept is based on the continuity of higher order geometric invariants. Piecewise polynomial curves with this general smoothness can be nicely studied using a geometric interpretation of symmetric polynomials.
43#
發(fā)表于 2025-3-29 02:44:22 | 只看該作者
Jason R. Finley,Farah Naaz,Francine W. Gohuence, there are simple efficient knot insertion algorithms to convert a B-spline representation to a B-spline representation over a finer and also evenly spaced knot sequence. Moreover, these algorithms are the prototypes for the class of the so-called ..
44#
發(fā)表于 2025-3-29 04:09:41 | 只看該作者
45#
發(fā)表于 2025-3-29 08:47:43 | 只看該作者
46#
發(fā)表于 2025-3-29 14:11:59 | 只看該作者
47#
發(fā)表于 2025-3-29 18:54:04 | 只看該作者
48#
發(fā)表于 2025-3-29 19:59:35 | 只看該作者
49#
發(fā)表于 2025-3-30 01:02:01 | 只看該作者
Gabriele Fischer,Katharina RuhlandSplines are piecewise polynomial curves that are differentiable up to a prescribed order. The simplest example is a piecewise linear .. spline, i.e., a polygonal curve. Other examples are the piecewise cubic .. splines, as constructed in 4.5.
50#
發(fā)表于 2025-3-30 05:30:09 | 只看該作者
https://doi.org/10.1007/978-3-031-52819-4Most algorithms for curves in Bézier representation have a generalized form for splines. One of the most important spline algorithms is knot insertion. It can be used for degree elevation, the de Boor algorithm and subdivision. In particular, de Casteljau’s algorithm can be understood as a special multiple knot insertion.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 05:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宾川县| 榆中县| 北安市| 黎城县| 交口县| 中阳县| 会理县| 宿松县| 中卫市| 合川市| 吴江市| 雷山县| 宁波市| 永仁县| 临汾市| 隆回县| 丽水市| 安顺市| 马公市| 鞍山市| 宝丰县| 女性| 五台县| 安福县| 玉林市| 攀枝花市| 体育| 松阳县| 太康县| 临朐县| 永州市| 武宣县| 大方县| 和平县| 宝兴县| 高雄市| 元江| 金阳县| 道孚县| 巫溪县| 忻城县|