找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Buildings of Spherical Type and Finite BN-Pairs; Jacques Tits Book 1974 Springer-Verlag Berlin Heidelberg 1974 Finite.Morphism.algebra.alg

[復(fù)制鏈接]
樓主: Lensometer
21#
發(fā)表于 2025-3-25 05:16:55 | 只看該作者
Buildings of type F4,A total ordering (resp. a numbering from 1 to 4) of the vertices of the diagram F. is called . if two consecutive vertices are joined by a single or double stroke (resp. if the ordering determined by this numbering is natural).
22#
發(fā)表于 2025-3-25 08:30:17 | 只看該作者
Appendix 1. Shadows,In 6.3, 7.4, 7.12, 10.13, we have seen that the study of weak buildings of the types A., C., D., F. is equivalent to the study of some “spaces” (projective spaces, polar spaces, etc.). The methods we have used to associate spaces to buildings are special cases of a general procedure which we shall describe here.
23#
發(fā)表于 2025-3-25 15:39:56 | 只看該作者
24#
發(fā)表于 2025-3-25 17:00:36 | 只看該作者
25#
發(fā)表于 2025-3-25 20:16:22 | 只看該作者
Coxeter complexes,t C′, which means, in other words, that there exists a folding of Σ which maps C′ onto C. . Σ .. The group generated by all reflections of a Coxeter complex Σ will be denoted by W(Σ) and called the . of Σ.
26#
發(fā)表于 2025-3-26 00:40:06 | 只看該作者
27#
發(fā)表于 2025-3-26 04:50:23 | 只看該作者
28#
發(fā)表于 2025-3-26 10:53:20 | 只看該作者
29#
發(fā)表于 2025-3-26 15:54:09 | 只看該作者
Teubner Studienbücher Mathematikonditions hold:. It is clear that Δ is a chamber complex and that the apartments are isomorphic subcomplexes. We shall see (3.15) that the isomorphism class of the apartments is entirely determined by Δ. More precisely, it can be shown that if a complex Δ possesses a set α of subcomplexes such that
30#
發(fā)表于 2025-3-26 18:48:17 | 只看該作者
Teubner Studienbücher Mathematikned over some field k, the group of k -rational points of X over k is denoted by X(k) (instead of X., as in [8]; the notations Z( ), R( ), R.( ) stand for “centralizer of”, “radical of”, “unipotent radical of” respectively; the group of all automorphisms (resp. all special automorphisms) of a buildi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屏东县| 陆丰市| 利辛县| 珲春市| 盐亭县| 唐河县| 邵阳市| 岫岩| 佛学| 上杭县| 松阳县| 杭州市| 河北区| 青铜峡市| 定州市| 定襄县| 吉木萨尔县| 新密市| 右玉县| 工布江达县| 河西区| 哈密市| 交城县| 云龙县| 甘孜县| 石家庄市| 深州市| 利川市| 泽库县| 荔浦县| 西宁市| 东至县| 谷城县| 鄯善县| 定边县| 兴隆县| 色达县| 吉木乃县| 象州县| 昂仁县| 大城县|