找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Buildings of Spherical Type and Finite BN-Pairs; Jacques Tits Book 1974 Springer-Verlag Berlin Heidelberg 1974 Finite.Morphism.algebra.alg

[復(fù)制鏈接]
樓主: Lensometer
11#
發(fā)表于 2025-3-23 10:42:08 | 只看該作者
12#
發(fā)表于 2025-3-23 14:52:39 | 只看該作者
https://doi.org/10.1007/978-3-8351-9000-9We recall that all buildings considered here are supposed to have finite Weyl complexes.
13#
發(fā)表于 2025-3-23 18:44:03 | 只看該作者
https://doi.org/10.1007/978-3-8351-9000-9In this section, we briefly recall some basic facts about sesquilinear forms, mainly in order to fix our terminology. For further details, see for instance [11], [28].
14#
發(fā)表于 2025-3-24 01:25:28 | 只看該作者
Teubner Studienbücher MathematikTHEOREM. . K . k, . n. : K → k . 3 . K. . (7.2.6) . K × k. → k . . . x. ∈ K . x. ∈ k . i = 1, 2, 3, 4.
15#
發(fā)表于 2025-3-24 04:39:13 | 只看該作者
Grenzwerte von Funktionen und StetigkeitA total ordering (resp. a numbering from 1 to 4) of the vertices of the diagram F. is called . if two consecutive vertices are joined by a single or double stroke (resp. if the ordering determined by this numbering is natural).
16#
發(fā)表于 2025-3-24 07:01:10 | 只看該作者
,Einführung in die Funktionalanalysis,In 6.3, 7.4, 7.12, 10.13, we have seen that the study of weak buildings of the types A., C., D., F. is equivalent to the study of some “spaces” (projective spaces, polar spaces, etc.). The methods we have used to associate spaces to buildings are special cases of a general procedure which we shall describe here.
17#
發(fā)表于 2025-3-24 13:25:57 | 只看該作者
18#
發(fā)表于 2025-3-24 18:35:54 | 只看該作者
19#
發(fā)表于 2025-3-24 22:18:34 | 只看該作者
Buildings of type Cn. II. Projective embeddings of polar spaces,In this section, we briefly recall some basic facts about sesquilinear forms, mainly in order to fix our terminology. For further details, see for instance [11], [28].
20#
發(fā)表于 2025-3-25 00:46:24 | 只看該作者
Buildings of type Cn. III. Non-embeddable polar spaces,THEOREM. . K . k, . n. : K → k . 3 . K. . (7.2.6) . K × k. → k . . . x. ∈ K . x. ∈ k . i = 1, 2, 3, 4.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 09:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洞口县| 厦门市| 防城港市| 喀喇沁旗| 兴隆县| 黎平县| 尼玛县| 增城市| 通化市| 浙江省| 扶沟县| 宁城县| 无极县| 镇远县| 夏邑县| 镇雄县| 龙南县| 和政县| 儋州市| 彭水| 高密市| 抚顺县| 绥德县| 江都市| 大姚县| 景宁| 全南县| 太保市| 新干县| 蓬溪县| 锡林郭勒盟| 云和县| 宝鸡市| 宣武区| 翁源县| 辰溪县| 汾阳市| 石首市| 偃师市| 西平县| 龙岩市|