找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; 5th International Wo Alessandro Crimi,Spyridon Bakas Conferen

[復(fù)制鏈接]
樓主: Diverticulum
51#
發(fā)表于 2025-3-30 09:31:30 | 只看該作者
F.M. Veronese,G. Pasut,S. Drioli,G.M. Bonoralioblastoma (GBM) brain tumor segmentation with Cascaded U-Net. Training patches are extracted from 335 cases from Brain Tumor Segmentation (BraTS) Challenge for training and results are validated on 125 patients. The proposed approach is evaluated quantitatively in terms of Dice Similarity Coefficient (DSC) and Hausdorff95 distance.
52#
發(fā)表于 2025-3-30 13:19:26 | 只看該作者
53#
發(fā)表于 2025-3-30 19:29:58 | 只看該作者
54#
發(fā)表于 2025-3-31 00:38:53 | 只看該作者
55#
發(fā)表于 2025-3-31 00:52:47 | 只看該作者
56#
發(fā)表于 2025-3-31 06:18:25 | 只看該作者
Norbert Welsch,Frank von Kuhlbergour image segmentation. Based on the ensembled segmentation, we present a biophysics-guided prognostic model for patient overall survival prediction which outperforms a data-driven radiomics approach. Our method won the second place of the MICCAI 2019 BraTS Challenge for the overall survival prediction.
57#
發(fā)表于 2025-3-31 09:57:37 | 只看該作者
J?ns G. Hilborn,P. Dubois,W. Volksennce with DICE scores of 0.898, 0.784, 0.779 for the whole tumor (WT), tumor core (TC), and enhancing tumor (ET), respectively and an accuracy of 34.5% for predicting survival. The Ensemble of multiresolution 2D networks achieved 88.75%, 83.28% and 79.34% dice for WT, TC, and ET respectively in a test dataset of 166 subjects.
58#
發(fā)表于 2025-3-31 16:01:55 | 只看該作者
59#
發(fā)表于 2025-3-31 19:00:20 | 只看該作者
The Role of Lysine-7 in Ribonuclease-Ak. We supervise our network with a variant of the focal Tversky loss function. Our architecture promotes explain-ability, light-weight CNN design and has achieved 0.687, 0.843 and 0.751 DSC scores on the BraTs 2019 test cohort which is competitive with the commonly used vanilla U-Net.
60#
發(fā)表于 2025-3-31 22:55:03 | 只看該作者
Automatic Brain Tumour Segmentation and Biophysics-Guided Survival Predictionour image segmentation. Based on the ensembled segmentation, we present a biophysics-guided prognostic model for patient overall survival prediction which outperforms a data-driven radiomics approach. Our method won the second place of the MICCAI 2019 BraTS Challenge for the overall survival prediction.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 18:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁安市| 博湖县| 诸暨市| 呼玛县| 萨嘎县| 伊吾县| 浪卡子县| 崇州市| 湖州市| 辰溪县| 秭归县| 沧源| 平顶山市| 金华市| 县级市| 泰顺县| 奉新县| 松滋市| 宽城| 徐汇区| 丹东市| 高邮市| 凤冈县| 定安县| 筠连县| 武邑县| 盐山县| 大洼县| 孝昌县| 和硕县| 宜兰市| 都江堰市| 兴和县| 廉江市| 中江县| 安龙县| 曲松县| 玉树县| 商都县| 彭水| 禄劝|