找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; 5th International Wo Alessandro Crimi,Spyridon Bakas Conferen

[復(fù)制鏈接]
樓主: Diverticulum
41#
發(fā)表于 2025-3-28 15:48:16 | 只看該作者
HPMA-Anticancer Drug Conjugates the BraTS test set, revealed that our method delivers accurate brain tumor segmentation, with the average DICE score of 0.72, 0.86, and 0.77 for the enhancing tumor, whole tumor, and tumor core, respectively. The total time required to process one study using our approach amounts to around 20?s.
42#
發(fā)表于 2025-3-28 22:38:55 | 只看該作者
43#
發(fā)表于 2025-3-29 01:42:12 | 只看該作者
Robust Semantic Segmentation of Brain Tumor Regions from 3D MRIsn this work, we explore best practices of 3D semantic segmentation, including conventional encoder-decoder architecture, as well combined loss functions, in attempt to further improve the segmentation accuracy. We evaluate the method on BraTS 2019 challenge.
44#
發(fā)表于 2025-3-29 04:38:12 | 只看該作者
Multi-modal U-Nets with Boundary Loss and Pre-training for Brain Tumor Segmentation the BraTS test set, revealed that our method delivers accurate brain tumor segmentation, with the average DICE score of 0.72, 0.86, and 0.77 for the enhancing tumor, whole tumor, and tumor core, respectively. The total time required to process one study using our approach amounts to around 20?s.
45#
發(fā)表于 2025-3-29 09:52:24 | 只看該作者
Hybrid Labels for Brain Tumor Segmentation strategies of residual-dense connections, multiple rates of an atrous convolutional layer on popular 3D U-Net architecture. To train and validate our proposed algorithm, we used BRATS 2019 different datasets. The results are promising on the different evaluation metrics.
46#
發(fā)表于 2025-3-29 11:35:21 | 只看該作者
0302-9743 p, BrainLes 2019, the International Multimodal Brain Tumor Segmentation (BraTS) challenge, the Computational Precision Medicine: Radiology-Pathology Challenge on Brain Tumor Classification (CPM-RadPath) challenge, as well as the tutorial session on Tools Allowing Clinical Translation of Image Comput
47#
發(fā)表于 2025-3-29 19:02:08 | 只看該作者
48#
發(fā)表于 2025-3-29 20:00:14 | 只看該作者
49#
發(fā)表于 2025-3-30 01:07:33 | 只看該作者
Semi-supervised Variational Autoencoder for Survival Prediction used, thereby increasing its generalization properties. Due to its semi-supervised nature, the method can learn to classify survival time by using a relatively small number of labeled subjects. We validate our model on the publicly available dataset from the Multimodal Brain Tumor Segmentation Challenge (BraTS) 2019.
50#
發(fā)表于 2025-3-30 05:45:38 | 只看該作者
Detection and Segmentation of Brain Tumors from MRI Using U-Nets time of a single input volume amounts to around 15? s using a single GPU. The preliminary experiments over the BraTS’19 validation set revealed that our approach delivers high-quality tumor delineation and offers instant segmentation.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 18:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
水富县| 安塞县| 临夏县| 鄂伦春自治旗| 贵州省| 石首市| 竹溪县| 台安县| 长宁县| 贵溪市| 金坛市| 陆良县| 凤阳县| 交口县| 昂仁县| 缙云县| 望谟县| 朝阳市| 平乐县| 家居| 桑植县| 维西| 兴城市| 桓台县| 牟定县| 张家口市| 南江县| 连南| 新巴尔虎右旗| 烟台市| 锦屏县| 墨脱县| 彰化市| 嘉祥县| 巫溪县| 武强县| 尼勒克县| 兖州市| 富顺县| 靖西县| 泾川县|