找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; Second International Alessandro Crimi,Bjoern Menze,Heinz Hand

[復制鏈接]
樓主: 退縮
31#
發(fā)表于 2025-3-27 00:12:43 | 只看該作者
32#
發(fā)表于 2025-3-27 03:27:35 | 只看該作者
33#
發(fā)表于 2025-3-27 06:06:08 | 只看該作者
Giuseppe Fontana,Mark Setterfieldtion. However, most of existing brain tumor segmentation methods based on deep learning are not able to ensure appearance and spatial consistency of segmentation results. In this study we propose a novel brain tumor segmentation method by integrating a Fully Convolutional Neural Network (FCNN) and C
34#
發(fā)表于 2025-3-27 11:11:26 | 只看該作者
35#
發(fā)表于 2025-3-27 16:11:43 | 只看該作者
36#
發(fā)表于 2025-3-27 17:50:12 | 只看該作者
Charles L. Weise,Robert J. Barbera employed here in the setting of brain tumors. Inspired by deep residual networks which won the ImageNet ILSVRC 2015 classification challenge, the FCR-NN combines optimization gains from residual identity mappings with a fully convolutional architecture for image segmentation that efficiently accoun
37#
發(fā)表于 2025-3-28 00:49:46 | 只看該作者
Eckhard Hein,Engelbert Stockhammera fully-convolutional network for local features and an encoder-decoder network in which convolutional layers and maxpooling compute high-level features, which are then upsampled to the resolution of the initial image using further convolutional layers and tied unpooling. We apply the method to segm
38#
發(fā)表于 2025-3-28 05:27:14 | 只看該作者
39#
發(fā)表于 2025-3-28 09:27:56 | 只看該作者
40#
發(fā)表于 2025-3-28 14:18:14 | 只看該作者
Anatoliy Peresetsky,Vladimir Popovt architectures that combine fine and coarse features to obtain the final segmentation. We compare three different networks that use multi-resolution features in terms of both design and performance and we show that they improve their single-resolution counterparts.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 15:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
内乡县| 卫辉市| 鹤壁市| 洪泽县| 桃江县| 阳信县| 陆河县| 紫金县| 莱州市| 连州市| 盘锦市| 南昌市| 山东省| 新竹市| 黄浦区| 新沂市| 仁布县| 彭水| 巴楚县| 乃东县| 阿拉善盟| 荔波县| 桃江县| 琼海市| 关岭| 五莲县| 庆城县| 漳州市| 六枝特区| 延庆县| 南乐县| 萨嘎县| 自治县| 铜山县| 忻州市| 长沙市| 筠连县| 商南县| 蛟河市| 德安县| 广饶县|