找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; Second International Alessandro Crimi,Bjoern Menze,Heinz Hand

[復制鏈接]
樓主: 退縮
11#
發(fā)表于 2025-3-23 13:22:14 | 只看該作者
Fully Convolutional Deep Residual Neural Networks for Brain Tumor Segmentation employed here in the setting of brain tumors. Inspired by deep residual networks which won the ImageNet ILSVRC 2015 classification challenge, the FCR-NN combines optimization gains from residual identity mappings with a fully convolutional architecture for image segmentation that efficiently accoun
12#
發(fā)表于 2025-3-23 16:21:55 | 只看該作者
13#
發(fā)表于 2025-3-23 19:24:41 | 只看該作者
Brain Tumor Segmantation Using Random Forest Trained on Iteratively Selected Patientsining the RDF in each iteration some patients are added to the training data using some heuristics approach instead of randomly selected training dataset. Feature extraction and selection were applied to select the most discriminative features for training our Random Decision forest on. The post-pro
14#
發(fā)表于 2025-3-23 22:44:48 | 只看該作者
15#
發(fā)表于 2025-3-24 03:58:38 | 只看該作者
16#
發(fā)表于 2025-3-24 08:42:36 | 只看該作者
17#
發(fā)表于 2025-3-24 12:46:37 | 只看該作者
Lifted Auto-Context Forests for Brain Tumour Segmentationt and refined via successive layers of Decision Forests (DFs). Specifically, we make the following contributions: (1) . via an efficient node-splitting criterion based on hold-out estimates, (2) . at a tree-level, thereby yielding shallow discriminative ensembles trained orders of magnitude faster,
18#
發(fā)表于 2025-3-24 18:17:21 | 只看該作者
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain InjuriesSecond International
19#
發(fā)表于 2025-3-24 20:17:24 | 只看該作者
https://doi.org/10.1007/978-3-319-92132-7ality of registration validation and the variety of data being made available. By including addition features such as expert tumour segmentations, the database will appeal to a broader spectrum of image processing researchers and be useful for validating a wider range of techniques for image-guided
20#
發(fā)表于 2025-3-25 00:56:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 15:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
株洲市| 黑河市| 乌兰察布市| 二连浩特市| 拉萨市| 马公市| 白水县| 颍上县| 泾川县| 渭南市| 宁武县| 淮阳县| 合阳县| 台中市| 盈江县| 新民市| 罗定市| 商南县| 喀什市| 阜新市| 三穗县| 司法| 湘潭县| 北京市| 化隆| 榕江县| 灵武市| 黄大仙区| 仁化县| 北流市| 安陆市| 湖北省| 文昌市| 静安区| 翁源县| 绥化市| 通州区| 吉隆县| 西安市| 南木林县| 江安县|