找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; Second International Alessandro Crimi,Bjoern Menze,Heinz Hand

[復(fù)制鏈接]
樓主: 退縮
31#
發(fā)表于 2025-3-27 00:12:43 | 只看該作者
32#
發(fā)表于 2025-3-27 03:27:35 | 只看該作者
33#
發(fā)表于 2025-3-27 06:06:08 | 只看該作者
Giuseppe Fontana,Mark Setterfieldtion. However, most of existing brain tumor segmentation methods based on deep learning are not able to ensure appearance and spatial consistency of segmentation results. In this study we propose a novel brain tumor segmentation method by integrating a Fully Convolutional Neural Network (FCNN) and C
34#
發(fā)表于 2025-3-27 11:11:26 | 只看該作者
35#
發(fā)表于 2025-3-27 16:11:43 | 只看該作者
36#
發(fā)表于 2025-3-27 17:50:12 | 只看該作者
Charles L. Weise,Robert J. Barbera employed here in the setting of brain tumors. Inspired by deep residual networks which won the ImageNet ILSVRC 2015 classification challenge, the FCR-NN combines optimization gains from residual identity mappings with a fully convolutional architecture for image segmentation that efficiently accoun
37#
發(fā)表于 2025-3-28 00:49:46 | 只看該作者
Eckhard Hein,Engelbert Stockhammera fully-convolutional network for local features and an encoder-decoder network in which convolutional layers and maxpooling compute high-level features, which are then upsampled to the resolution of the initial image using further convolutional layers and tied unpooling. We apply the method to segm
38#
發(fā)表于 2025-3-28 05:27:14 | 只看該作者
39#
發(fā)表于 2025-3-28 09:27:56 | 只看該作者
40#
發(fā)表于 2025-3-28 14:18:14 | 只看該作者
Anatoliy Peresetsky,Vladimir Popovt architectures that combine fine and coarse features to obtain the final segmentation. We compare three different networks that use multi-resolution features in terms of both design and performance and we show that they improve their single-resolution counterparts.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 07:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和田市| 乐平市| 铅山县| 天等县| 石景山区| 辛集市| 阿克苏市| 胶州市| 都昌县| 扎赉特旗| 乡宁县| 泰顺县| 文昌市| 浙江省| 盘锦市| 微博| 霍州市| 庆云县| 滦平县| 宜川县| 兖州市| 仙桃市| 湖南省| 华阴市| 克山县| 宁南县| 信宜市| 静宁县| 元氏县| 太谷县| 湘潭县| 金乡县| 泊头市| 灵璧县| 武陟县| 友谊县| 绍兴市| 彰化县| 马山县| 常宁市| 南充市|